SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bacou Marion) "

Sökning: WFRF:(Bacou Marion)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bacou, Marion, et al. (författare)
  • Development of Preclinical Ultrasound Imaging Techniques to Identify and Image Sentinel Lymph Nodes in a Cancerous Animal Model
  • 2022
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymph nodes (LNs) are believed to be the first organs targeted by colorectal cancer cells detached from a primary solid tumor because of their role in draining interstitial fluids. Better detection and assessment of these organs have the potential to help clinicians in stratification and designing optimal design of oncological treatments for each patient. Whilst highly valuable for the detection of primary tumors, CT and MRI remain limited for the characterization of LNs. B-mode ultrasound (US) and contrast-enhanced ultrasound (CEUS) can improve the detection of LNs and could provide critical complementary information to MRI and CT scans; however, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines advise that further evidence is required before US or CEUS can be recommended for clinical use. Moreover, knowledge of the lymphatic system and LNs is relatively limited, especially in preclinical models. In this pilot study, we have created a mouse model of metastatic cancer and utilized 3D high-frequency ultrasound to assess the volume, shape, and absence of hilum, along with CEUS to assess the flow dynamics of tumor-free and tumor-bearing LNs in vivo. The aforementioned parameters were used to create a scoring system to predict the likelihood of a disease-involved LN before establishing post-mortem diagnosis with histopathology. Preliminary results suggest that a sum score of parameters may provide a more accurate diagnosis than the LN size, the single parameter currently used to predict the involvement of an LN in disease.
  •  
2.
  • Sjostrand, Sandra, et al. (författare)
  • Contrast enhanced magneto-motive ultrasound in lymph nodes-modelling and pre-clinical imaging using magnetic microbubbles
  • 2022
  • Ingår i: 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022. - 1557-170X. - 9781728127828 ; 2022-July, s. 194-197
  • Konferensbidrag (refereegranskat)abstract
    • Despite advances in MRI, the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neo-adjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterization of cancer tissues. We report proof-of-concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced tissue deformations. The feasibility of the proposed application was explored using a combination of pre-clinical ultrasound imaging and finite element analysis. First, contrast enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, preliminary CE-MMUS data were acquired as a proof of concept. Third, the magneto-mechanical interactions of a magnetic microbubble with an elastic solid were simulated using finite element software. Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occurring 3.7 s post-injection. Preliminary CE-MMUS indicates the presence of magnetic contrast agent in the lymph node. The finite element analysis explores how the magnetic force is transferred to motion of the solid, which depends on elasticity and bubble radius, indicating an inverse relation with displacement. Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. Clinical Relevance-Robust detection and characterisation of lymph nodes could be aided by visualising lymphatic drainage of magnetic microbubbles using contrast enhanced ultrasound imaging and magneto-motion, which is dependent on tissue mechanical properties.
  •  
3.
  • Sjostrand, Sandra, et al. (författare)
  • Contrast-enhanced magnetomotive ultrasound imaging (CE-MMUS) for colorectal cancer staging : Assessment of sensitivity and resolution to detect alterations in tissue stiffness
  • 2019
  • Ingår i: 2019 IEEE International Ultrasonics Symposium, IUS 2019. - 1948-5719 .- 1948-5727. - 9781728145976 - 9781728145969 ; 2019-October, s. 1077-1080
  • Konferensbidrag (refereegranskat)abstract
    • A key challenge in the treatment of colorectal cancer is identification of the sentinel draining lymph node. Magnetomotive ultrasound, MMUS, has identified lymph nodes in rat models: superparamagnetic iron oxide nanoparticles (SPIONs) accumulated in the lymph are forced to oscillate by an external magnetic field; the resulting axial displacement is recovered allowing structure delineation with potential to indicate alterations in tissue stiffness, but it is limited by small vibration amplitudes. We propose CE-MMUS using SPION loaded microbubbles (SPION-MBs) to enhance sensitivity, reduce toxicity, and offer additional diagnostic or perfusion information. Laser doppler vibrometry measurements was performed on SPION containing tissue mimicking material during magnetic excitation. These measurements show a vibration amplitude of 279 ± 113 μm in a material with Young's modulus of 24.3 ± 2.8 kPa, while the displacements were substantially larger, 426 ± 9 μm, in the softer material, with a Young's modulus of 9.6 ± 0.8 kPa. Magnetic field measurement data was used to calibrate finite element modelling of both MMUS and CE-MMUS. SPION-MBs were shown to be capable of inducing larger tissue displacements under a given magnetic field than SPIONs alone, leading to axial displacements of up to 2.3x larger. A doubling in tissue stiffness (as may occur in cancer) reduces the vibration amplitude. Thus, there is potential for CE-MMUS to achieve improved stiffness sensitivity. Our aim is to define the potential contribution of CE-MMUS in colorectal cancer diagnosis and surgical guidance.
  •  
4.
  • Sjöstrand, Sandra, et al. (författare)
  • Modelling of magnetic microbubbles to evaluate contrast enhanced magnetomotive ultrasound in lymph nodes – a pre-clinical study
  • 2022
  • Ingår i: British Journal of Radiology. - : British Institute of Radiology. - 0007-1285 .- 1748-880X. ; 95:1135
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Despite advances in MRI the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neoadjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterisation of cancer tissues. We report proof of concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interro-gate tissue mechanical properties through magnetically induced deformations. Methods: The feasibility of the proposed application was explored using a combination of experimental animal and phantom ultrasound imaging, along with finite element analysis. First, contrast-enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, tissue phantoms were imaged using MMUS to illustrate the force-and elasticity dependence of the magneto-motion. Third, the magnetomechanical interactions of a magnetic microbubble with an elastic solid were simu-lated using finite element software. Results: Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occur-ring 3.7 s post-injection. The magnetic microbubble gave rise to displacements depending on force, elasticity, and bubble radius, indicating an inverse relation between displacement and the latter two. Conclusion: Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. Advances in knowledge: (a) Lymphatic drainage of magnetic microbubbles visualised using contrast-enhanced ultrasound imaging and (b) magnetomechan-ical interactions between such bubbles and surrounding tissue could both contribute to (c) robust detection and characterisation of lymph nodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy