SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Badam Tejaswi) "

Sökning: WFRF:(Badam Tejaswi)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Badam, Tejaswi, et al. (författare)
  • CD4(+) T-cell DNA methylation changes during pregnancy significantly correlate with disease-associated methylation changes in autoimmune diseases
  • 2022
  • Ingår i: Epigenetics. - : Taylor & Francis Group. - 1559-2294 .- 1559-2308. ; 17:9, s. 1040-1055
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetics may play a central, yet unexplored, role in the profound changes that the maternal immune system undergoes during pregnancy and could be involved in the pregnancy-induced modulation of several autoimmune diseases. We investigated changes in the methylome in isolated circulating CD4(+) T-cells in non-pregnant and pregnant women, during the 1(st) and 2(nd) trimester, using the Illumina Infinium Human Methylation 450K array, and explored how these changes were related to autoimmune diseases that are known to be affected during pregnancy. Pregnancy was associated with several hundreds of methylation differences, particularly during the 2(nd) trimester. A network-based modular approach identified several genes, e.g., CD28, FYN, VAV1 and pathways related to T-cell signalling and activation, highlighting T-cell regulation as a central component of the observed methylation alterations. The identified pregnancy module was significantly enriched for disease-associated methylation changes related to multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. A negative correlation between pregnancy-associated methylation changes and disease-associated changes was found for multiple sclerosis and rheumatoid arthritis, diseases that are known to improve during pregnancy whereas a positive correlation was found for systemic lupus erythematosus, a disease that instead worsens during pregnancy. Thus, the directionality of the observed changes is in line with the previously observed effect of pregnancy on disease activity. Our systems medicine approach supports the importance of the methylome in immune regulation of T-cells during pregnancy. Our findings highlight the relevance of using pregnancy as a model for understanding and identifying disease-related mechanisms involved in the modulation of autoimmune diseases.
  •  
2.
  • Badam, Tejaswi V. S., et al. (författare)
  • A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis
  • 2021
  • Ingår i: BMC Genomics. - : BioMed Central. - 1471-2164. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-omic modules. Result: We assessed eight module identification methods in 57 previously published expression and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omic integration of 20 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS and risk-factor-associated genes from several independent cohorts. Our benchmark of modules showed that in immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS genes. The multi-omic case study using MS data revealed the robust identification of a module of 220 genes. Strikingly, most genes of the module were differentially methylated upon the action of one or several environmental risk factors in MS (n = 217, P = 10− 47) and were also independently validated for association with five different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS. Conclusions: We believe our analysis provides a workflow for selecting modules and our benchmark study may help further improvement of disease module methods. Moreover, we also stress that our methodology is generally applicable for combining and assessing the performance of multi-omic approaches for complex diseases. 
  •  
3.
  • Badam, Tejaswi Venkata Satya, 1989- (författare)
  • Omic Network Modules in Complex diseases
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biological systems encompass various molecular entities such as genes, proteins, and other biological molecules, including interactions among those components. Understanding a given phenotype, the functioning of a cell or tissue, aetiology of disease, or cellular organization, requires accurate measurements of the abundance profiles of these molecular entities in the form of biomedical data. The analysis of the interplay between these different entities at various levels represented in the form of biological network provides a mechanistic understanding of the observed phenotype. In order to study this interplay, there is a requirement of a conceptual and intuitive framework which can model multiple omics such as genome, transcriptome, or a proteome. This can be addressed by application of network-based strategies.Translational bioinformatics deals with the development of analytic and interpretive methods to optimize the transformation of different omics and clinical data to understanding of complex diseases and improving human health. Complex diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and non-small cell lung cancer (NSCLC) etc., are hypothesized to be a result of a disturbance in the omic networks rendering the healthy cells to be in a state of malfunction. Even though there are numerous methods to layout the relation of the interactions among omics in complex diseases, the output network modules were not clearly interpreted.In this PhD thesis, we showed how different omic data such as transcriptome and methylome can be mapped to the network of interactions to extract highly interconnected gene sets relevant to the disease, so called disease modules. First, we selected common module identification methods and assembled them into a unified framework of the methods implemented in an Rpackage MODifieR (Paper I). Secondly, we showed that the concept of the network modules can be applied on the whole genome sequencing data for developing a tested model for predicting myelosuppressive toxicity (Paper II).Furthermore, we demonstrated that network modules extracted using the methylome data helped identifying several genes that were associated with pregnancy-induced pathways and were enriched for disease-associated methylation changes that were also shared by three auto-immune and inflammatory diseases, namely MS, RA, and SLE (Paper III). Remarkably, those methylation changes correlated with the expected outcome from clinical experience in those diseases. Last, we benchmarked the omic network modules on 19 different complex diseases using both transcriptomic and methylomic data. This led to the identification of a multi-omic MS module that was highly enriched disease-associated genes identified by genome-wide association studies, but also genes associated with the most common environmental risk factors of MS (Paper IV).The application of the network modules concept on different omics is the centrepiece of the research presented in this PhD thesis. The thesis represents the application of omic network modules in complex diseases and how these modules should be integrated and interpreted. In particular, it aimed to show the importance of networks owing to the incomplete knowledge of the genes dysregulated in complex diseases and the contribution of this thesis that provides tools and benchmarks for the methods as well as insights into how a network module can be extracted and interpreted from the omic data in complex diseases.
  •  
4.
  • Björn, Niclas, 1990-, et al. (författare)
  • Whole-genome sequencing and gene network modules predict gemcitabine/carboplatin-induced myelosuppression in non-small cell lung cancer patients
  • 2020
  • Ingår i: npj Systems Biology and Applications. - : Nature Publishing Group. - 2056-7189. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Gemcitabine/carboplatin chemotherapy commonly induces myelosuppression, including neutropenia, leukopenia, and thrombocytopenia. Predicting patients at risk of these adverse drug reactions (ADRs) and adjusting treatments accordingly is a long-term goal of personalized medicine. This study used whole-genome sequencing (WGS) of blood samples from 96 gemcitabine/carboplatin-treated non-small cell lung cancer (NSCLC) patients and gene network modules for predicting myelosuppression. Association of genetic variants in PLINK found 4594, 5019, and 5066 autosomal SNVs/INDELs with p ≤ 1 × 10−3 for neutropenia, leukopenia, and thrombocytopenia, respectively. Based on the SNVs/INDELs we identified the toxicity module, consisting of 215 unique overlapping genes inferred from MCODE-generated gene network modules of 350, 345, and 313 genes, respectively. These module genes showed enrichment for differentially expressed genes in rat bone marrow, human bone marrow, and human cell lines exposed to carboplatin and gemcitabine (p < 0.05). Then using 80% of the patients as training data, random LASSO reduced the number of SNVs/INDELs in the toxicity module into a feasible prediction model consisting of 62 SNVs/INDELs that accurately predict both the training and the test (remaining 20%) data with high (CTCAE 3–4) and low (CTCAE 0–1) maximal myelosuppressive toxicity completely, with the receiver-operating characteristic (ROC) area under the curve (AUC) of 100%. The present study shows how WGS, gene network modules, and random LASSO can be used to develop a feasible and tested model for predicting myelosuppressive toxicity. Although the proposed model predicts myelosuppression in this study, further evaluation in other studies is required to determine its reproducibility, usability, and clinical effect.
  •  
5.
  • Carlström, Karl E., et al. (författare)
  • Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes
  • 2019
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10:1, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethyl fumarate (DMF) is a first-line-treatment for relapsing-remitting multiple sclerosis (RRMS). The redox master regulator Nrf2, essential for redox balance, is a target of DMF, but its precise therapeutic mechanisms of action remain elusive. Here we show impact of DMF on circulating monocytes and T cells in a prospective longitudinal RRMS patient cohort. DMF increases the level of oxidized isoprostanes in peripheral blood. Other observed changes, including methylome and transcriptome profiles, occur in monocytes prior to T cells. Importantly, monocyte counts and monocytic ROS increase following DMF and distinguish patients with beneficial treatment-response from non-responders. A single nucleotide polymorphism in the ROS-generating NOX3 gene is associated with beneficial DMF treatment-response. Our data implicate monocyte-derived oxidative processes in autoimmune diseases and their treatment, and identify NOX3 genetic variant, monocyte counts and redox state as parameters potentially useful to inform clinical decisions on DMF therapy of RRMS.
  •  
6.
  • de Weerd, Hendrik A., et al. (författare)
  • MODifieR : an ensemble R package for inference of disease modules from transcriptomics networks
  • 2020
  • Ingår i: Bioinformatics. - : Oxford University Press. - 1367-4803 .- 1367-4811 .- 1460-2059. ; 36:12, s. 3918-3919
  • Tidskriftsartikel (refereegranskat)abstract
    • MOTIVATION: Complex diseases are due to the dense interactions of many disease-associated factors that dysregulate genes that in turn form so-called disease modules, which have shown to be a powerful concept for understanding pathological mechanisms. There exist many disease module inference methods that rely on somewhat different assumptions, but there is still no gold standard or best performing method. Hence, there is a need for combining these methods to generate robust disease modules.RESULTS: We developed MODule IdentiFIER (MODifieR), an ensemble R package of nine disease module inference methods from transcriptomics networks. MODifieR uses standardized input and output allowing the possibility to combine individual modules generated from these methods into more robust disease-specific modules, contributing to a better understanding of complex diseases.AVAILABILITY: MODifieR is available under the GNU GPL license and can be freely downloaded from https://gitlab.com/Gustafsson-lab/MODifieR and as a Docker image from https://hub.docker.com/r/ddeweerd/modifier.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  •  
7.
  • Mattson, Lina, et al. (författare)
  • Potential Involvement of Type I Interferon Signaling in Immunotherapy in Seasonal Allergic Rhinitis
  • 2016
  • Ingår i: Journal of Immunology Research. - : HINDAWI PUBLISHING CORP. - 2314-8861 .- 2314-7156.
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific immunotherapy (SIT) reverses the symptoms of seasonal allergic rhinitis (SAR) in most patients. Recent studies report type I interferons shifting the balance between type I T helper cell (Th1) and type II T helper cells (Th2) towards Th2 dominance by inhibiting the differentiation of naive Tcells into Th1 cells. As SIT is thought to cause a shift towardsTh1 dominance, we hypothesized that SIT would alter interferon type I signaling. To test this, allergen and diluent challenged CD4(+) T cells from healthy controls and patients from different time points were analyzed. The initial experiments focused on signature genes of the pathway and found complex changes following immunotherapy, which were consistent with our hypothesis. As interferon signaling involves multiple genes, expression profiling studies were performed, showing altered expression of the pathway. These findings require validation in a larger group of patients in further studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Gustafsson, Mika (5)
Badam, Tejaswi (3)
Lubovac-Pilav, Zelmi ... (3)
Benson, Mikael (2)
Olsson, Tomas (2)
Kockum, Ingrid (2)
visa fler...
Nestor, Colm (2)
Badam, Tejaswi V. S. (2)
de Weerd, Hendrik A. (2)
Martinez, David (2)
Jagodic, Maja (2)
Badam, Tejaswi Venka ... (2)
Ernerudh, Jan (1)
Berg, Göran (1)
Jenmalm, Maria (1)
Sahlén, Pelin (1)
Lundeberg, Joakim (1)
Aeinehband, Shahin (1)
Piehl, Fredrik (1)
Al Nimer, Faiez (1)
Björkander, Janne (1)
Alfredsson, Lars (1)
Koyi, Hirsh (1)
Brandén, Eva (1)
Checa, Antonio (1)
Wheelock, Craig E. (1)
Svensson-Arvelund, J ... (1)
Ledin, Torbjörn (1)
Xiang, Zou (1)
Gyllenberg, Alexandr ... (1)
Bhai Mehta, Ratnesh (1)
Lewensohn, Rolf (1)
Hellberg, Sandra (1)
Lechner-Scott, Jeann ... (1)
Lea, Rodney A. (1)
Tost, Jorg (1)
Mariette, Xavier (1)
Gustafsson, Mika, As ... (1)
Lubovac-Pilav, Zelmi ... (1)
Jagodic, Maja, Assoc ... (1)
Baranzini, Sergio, P ... (1)
Lentini, Antonio (1)
Ewing, Ewoud (1)
Huang, Jesse (1)
Green, Henrik, 1975- (1)
de Petris, Luigi (1)
Björn, Niclas, 1990- (1)
Spalinskas, Rapolas, ... (1)
Gustafsson, Mika, 19 ... (1)
Zhang, Huan (1)
visa färre...
Lärosäte
Linköpings universitet (7)
Högskolan i Skövde (5)
Karolinska Institutet (4)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy