SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bader Erik) "

Sökning: WFRF:(Bader Erik)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akter, Shaheda T., et al. (författare)
  • A numerical study of the stiffness and strength of cross-laminated timber wall-to-floor connections under compression perpendicular to the grain
  • 2021
  • Ingår i: Buildings. - : MDPI AG. - 2075-5309. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of cross-laminated timber (CLT) in multi-story buildings is increasing due to the potential of wood to reduce green house gas emissions and the high load-bearing capacity of CLT. Compression perpendicular to the grain (CPG) in CLT is an important design aspect, especially in multi-storied platform-type CLT buildings, where CPG stress develops in CLT floors due to loads from the roof or from upper floors. Here, CPG of CLT wall-to-floor connections are studied by means of finite element modeling with elasto-plastic material behavior based on a previously validated Quadratic multi-surface (QMS) failure criterion. Model predictions were first compared with experiments on CLT connections, before the model was used in a parameter study, to investigate the influence of wall and floor thicknesses, the annual ring pattern of the boards and the number of layers in the CLT elements. The finite element model agreed well with experimental findings. Connection stiffness was overestimated, while the strength was only slightly underestimated. The parameter study revealed that the wall thickness effect on the stiffness and strength of the connection was strongest for the practically most relevant wall thicknesses between 80 and about 160 mm. It also showed that an increasing floor thickness leads to higher stiffness and strength, due to the load dispersion effect. The increase was found to be stronger for smaller wall thicknesses. The influence of the annual ring orientation, or the pith location, was assessed as well and showed that boards cut closer to the pith yielded lower stiffness and strength. The findings of the parameter study were fitted with regression equations. Finally, a dimensionless ratio of the wall-to-floor thickness was used for deriving regression equations for stiffness and strength, as well as for load and stiffness increase factors, which could be used for the engineering design of CLT connections.
  •  
2.
  • Akter, Shaheda T. (författare)
  • Experimental characterization and numerical modeling of compression perpendicular to the grain in wood and cross-laminated timber
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Compression perpendicular to the grain (CPG) of wood is a typical loading situation in timber structures. It has been an extensively studied research topic for decades, due to the highly ductile behavior of wood under such loading, the large variations in mechanical properties, and the relevance of these properties in structural design. Among others, the main influencing factors for CPG properties are stressed volume, load and support configurations, and annual ring orientations to the loading direction. After the innovation of the massive, engineered wood based product, cross-laminated timber (CLT) and its application in high rise buildings, CPG of wood has gained further importance. The development of a non-homogeneous, undesired and combined stress state under CPG in solid wood, due to the material anisotropy in the radial-tangential plane, can build up a complex multi-axial stress state in CLT. As a comparatively new product, the study of the influencing factors for CPG properties of CLT, and an understanding of the local material behavior under such loading, is essential for product characterization and for the development of design guidelines to ensure safe and efficient design.The main aim of the doctoral thesis is to establish a relationship betweenthe anisotropic behavior of clear wood in the transverse plane and the structural response of CLT under CPG loading. Both experimental and numerical studies were adopted herein, to enhance the understanding of the basic material behavior and the product and structural behavior. On the clear wood scale, the focus was on developing a test setup for uniaxial and biaxial loading in the radial-tangential(RT) plane. The potential of the developed test setup for the biaxial testing in the transverse plane was exploited for the investigation of the moisture and time dependent behavior of clear wood under radial compression and rolling shear loading. For data acquisition, in addition to the force and displacement data measured by the internal actuators of the testing machine and an external load cell,a contact-free digital image correlation (DIC) system was used in the experimental investigations. A numerical model was developed, which can describe the elasto-plastic behavior of wood under compression in the transverse plane and predict the structural behavior of solid wood and CLT. For that purpose, a novel Quadratic multi-surface (QMS) failure criterion and a simplified Hoffman failure criterion were implemented in a user-subroutine in the finite element software Abaqus®, and their suitability was compared with the Abaqus implemented Hill’s criterion.The validation of the material models was based on the experimental investigations of failure behavior of clear wood under stress perpendicular to the grain with rolling shear interaction. The material models were further utilized to predict the structural response of solid wood and CLT wall-to-floor connections under CPG loading. The predicted response of CLT connections under CPG by using the above-mentioned material models was compared with experiments, which investigated the influences of different connection types, wall and floor thicknesses, positions of walls, and outer deck layer orientations. The models were then applied to investigate the influence of the pith location in the boards, the number of layers and the thickness of walls and the floor on the stiffness and strength of CLT connections. Moreover, the CLT connection’s rotational rigidity as a consequence of compressive force from the upper floor in a multi-story building was studied by means of finite element calculations.The DIC measured strain fields from the experiments on clear wood confirmed the dependence of strain field on the curvature of the annual rings. As regards the material models, Hill’s model resulted in significantly higher force carrying capacity than experiments on clear wood, whereas Hoffman’s and QMS models predicted reasonably well the force-displacement relationships as found in experiments. The Hoffman’s and QMS models predicted stiffness was about 5–10% higher than corresponding experimental results on clear wood, and about 25% higher for CLT connections. The higher difference in the latter case is due to the difference in material properties of clear wood and structural timber, and the contact behavior between the structural members. The results from CLT wall-to-floor connections revealed a strong influence of loading and supporting configurations, wall thickness and pith locations on their stiffness and strength. A compressive loading on the CLT wall showed a positive effect on the rotational stiffness of CLT wall-to-floor connections, which considerably reduces the CLT floor mid-span deflection in comparison to a simply-supported floor.The thesis work contributes to an enhanced understanding of the anisotropic material behavior of wood in the RT-plane and of its effects on structural timber and CLT under CPG loading. The outcomes of the thesis are beneficial to the product design and standardization of CLT and can be applied in further product development and in optimized structural design.
  •  
3.
  •  
4.
  •  
5.
  • Akter, Shaheda T., et al. (författare)
  • Numerical modelling of wood under combined loading of compressionperpendicular to the grain and rolling shear
  • 2021
  • Ingår i: Engineering structures. - : Elsevier. - 0141-0296 .- 1873-7323. ; 244
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical modeling is an efficient tool for experimental validation and for gaining a deeper understanding of complex material phenomena, especially when causal relationships are overlaid by material variability. Wood is such a highly orthotropic and complex material, which in engineering problems however is considered as macro- homogeneous. The aim of this study is to numerically investigate stress and strain states of wood in the radial- tangential plane and the influence of the orthotropic material behavior on the structural response. Model vali-dation is based on experiments performed on clear wood of Norway spruce (Picea abies) by using a biaxial test setup. Three material models were used, namely Hill’s plasticity model, the Hoffman criterion and a novel quadratic multi-surface (QMS) criterion. After validation on the local material scale, the models were applied to the engineering problem of compression perpendicular to the grain for studying the effect of the unloaded length. As a novel part, the influence of the annual ring structure on the local material behavior and the global elasto- plastic force–displacement behavior of wood under compression perpendicular to the grain were numerically investigated. Hill’s failure criterion was found to be the least suitable at both length scales, local material behavior and global structural response. The Hoffman and the QMS criteria showed quite good agreement with the biaxial experiments in terms of force–displacement relations and strain distributions for different loading situations, especially for combinations with radial compression, while there was less agreement with experiments for  the  behavior of  combinations with tangential compression. Application of  these material models to compression perpendicular to the grain for studying the unloaded length effect yielded similar trends as observed in structural tests. A reasonable and similar force–displacement response by Hoffman and QMS criteria was observed, while Hill’s model yielded significantly overestimated force carrying capacity. Differences in force-–displacement response for different loading situations were well in line with literature findings and the infl-ence of the annual ring curvature on the overall force–displacement behavior could be quantified.
  •  
6.
  • Akter, Shaheda T., et al. (författare)
  • Stiffness of cross-laminated timber (CLT) wall-to-floor-to-wall connections in platform-type structures
  • 2021
  • Ingår i: World Conference on Timber Engineering 2021, WCTE 2021. - Santiago, Chile : World Conference on Timber Engineering, WCTE.
  • Konferensbidrag (refereegranskat)abstract
    • Wall-to-floor-to-wall connections are important for the performance of multi-storey, platform-type cross-laminated timber (CLT) structures. Their stiffness properties are studied by means of a numerical model, which was previously validated with experimental data from material testing and CLT connections loaded perpendicular to the grain. In this work, the stiffness of CLT wall-to-floor-to-wall connections is derived and its dependence on the compressive loading in the CLT walls and on wall and floor thicknesses were investigated. The compatibility of the local model with the connection size in structural design models, was investigated by studying the effect of the floor length and the wall height in the numerical model. The results showed that both rotational elastic stiffness and moment capacity of the floor connection increase with increasing compressive force on the CLT wall. However, a moderate decrease in stiffness, but a stronger rotation hardening was found for higher wall pressures, while lower wall pressures yielded an ideal plastic behaviour. The wall thickness showed a higher influence on the connection stiffness and moment capacity than the floor thickness. The influence of the support condition on the deflection of a CLT floor was exemplified. This study includes novel stiffness data for the design of CLT floors in platform type constructions.
  •  
7.
  • Arking, D. E., et al. (författare)
  • Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:8, s. 826-836
  • Tidskriftsartikel (refereegranskat)abstract
    • The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼ 8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD. © 2014 Nature America, Inc.
  •  
8.
  • Bader, Erik, et al. (författare)
  • Identification of proliferative and mature beta-cells in the islets of Langerhans
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 535:7612, s. 430-
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of beta-cells. Pancreatic beta-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential(1-5); understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene(6), acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature beta-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs(7-9). We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger beta-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for beta-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional beta-cell heterogeneity and induce beta-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional beta-cell mass in diabetic patients.
  •  
9.
  • Bader, Thomas K., 1980-, et al. (författare)
  • Dowel deformations in multi-dowel LVL-connections under moment loading
  • 2015
  • Ingår i: Wood Material Science & Engineering. - : Taylor & Francis. - 1748-0272 .- 1748-0280. ; 10:3, s. 216-231
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the experimental study presented herein is the assessment and quantification of the behavior of individual dowels in multi-dowel connections loaded by a bending moment. For this purpose, double-shear, steel-to-timber connections with nine steel dowels arranged in different patterns and with different dowel diameters were tested in four-point bending. In order to achieve a ductile behavior with up to 7° relative rotation, the connections were partly reinforced with self-tapping screws. The reinforcement did not influence the global load–deformation behavior, neither for dowel diameters of 12 mm nor for 20 mm, as long as cracking was not decisive. The deformation of the individual dowels was studied by means of a non-contact deformation measurement system. Thus, the crushing deformation, that is, the deformation at the steel plate, and the bending deformation of the dowels could be quantified. In the case of 12 mm dowels, the bending deformation was larger than the crushing deformation, while it was smaller in the case of 20 mm dowels. Moreover, dowels loaded parallel to the grain showed larger bending deformations than dowels loaded perpendicular to the grain. This indicates that the loading of the individual dowels in the connection differs depending on their location.
  •  
10.
  • Bader, Thomas K., 1980-, et al. (författare)
  • Experimental Assessment of the Load Distribution in Multi-Dowel Timber Connections
  • 2016
  • Ingår i: 17th International Conference on Experimental Mechanics, Rhodes, Greece, July 3-7, 2016.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • An integrative, hierarchically organized testing procedure for the quantification of the load distribution in multi-dowel timber connections is presented herein. The use of contactless deformation measurement systems allowed the combination of test data from single dowel and multi-dowel connections, which gave access to the loads acting on each dowel over the full loading history. As a consequence of the anisotropic material behavior of wood, a nonuniform and progressively changing load distribution among the dowels was found.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (10)
konferensbidrag (5)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Dorn, Michael, 1978- (4)
Alonso, A. (1)
Liu, Y. (1)
Wang, X. (1)
Peters, A (1)
Korsgren, Olle (1)
visa fler...
Kivimaki, M (1)
Raychaudhuri, S (1)
Tanaka, T. (1)
Uhlén, Mathias (1)
Celis, Julio E. (1)
Lind, Lars (1)
Levander, Fredrik (1)
Carracedo, A (1)
Torres, M. (1)
Franke, A (1)
Smith, Gustav (1)
Brown, M. (1)
Hoffmann, P (1)
Sinagra, G (1)
Torinsson Naluai, Ås ... (1)
Ferrucci, L (1)
Gudnason, V (1)
Hofman, A (1)
Moruzzi, Noah (1)
Deutsch, Eric W. (1)
Omenn, Gilbert S. (1)
Paik, Young Ki (1)
He, Fuchu (1)
Syvänen, Ann-Christi ... (1)
Prasad, T. S. Keshav ... (1)
Costello, Catherine ... (1)
Fenselau, Catherine (1)
Jensen, Ole N. (1)
Loo, Joseph A. (1)
Sundin, Mikael (1)
Cant, Andrew (1)
Dunn, Michael J (1)
Bustelo, Xosé R (1)
Fasth, Anders, 1945 (1)
Kumari, M (1)
Bis, J. C. (1)
Nolte, I. M. (1)
Jamshidi, Y. (1)
Muller-Nurasyid, M. (1)
Waldenberger, M. (1)
Morris, R. W. (1)
Rotter, J. I. (1)
Psaty, B. M. (1)
Snieder, H. (1)
visa färre...
Lärosäte
Linnéuniversitetet (11)
Lunds universitet (8)
Göteborgs universitet (2)
Uppsala universitet (2)
Karolinska Institutet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Mittuniversitetet (1)
Högskolan Dalarna (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Teknik (12)
Medicin och hälsovetenskap (4)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy