SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Badyra Bogna) "

Sökning: WFRF:(Badyra Bogna)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Slazak, Blazej, et al. (författare)
  • The Influence of Plant Stress Hormones and Biotic Elicitors on Cyclotide Production in Viola uliginosa Cell Suspension Cultures
  • 2022
  • Ingår i: PLANTS. - : MDPI. - 2223-7747. ; 11:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclotides are macrocycle peptides produced by plants from several families, including Violaceae. These compounds have the potential for applications in medicine, bioengineering and crop protection thanks to their multiple biological activities. In most cases, cyclotides are extracted from plant material. Plant cell culture provides a viable and sustainable form of plant biomass production Cyclotides are host defense peptides. The aim of the current study was to test whether different plant stress hormones and biological elicitors have effects on cyclotide production in Viola uliginosa suspension cultures. Different concentrations of jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA) and neutralized pathogens were tested. The cyclotide production was assessed using MALDI-MS. Five major peptides produced by V. uliginosa cultures were chosen for analysis, of which one was sequenced de novo. The treatments had little influence on the suspension's growth, with the exception of 100 mu M SA, which enhanced the biomass increase, and 100 mu M ABA, which was toxic. Significant increases in the production of three cyclotides (viul M, cyO13 and cyO3) were observed in suspensions primed with JA (50 mu M, 100 mu M, 200 mu M) after 14 days of culturing. Biotic elicitors had no observable effect on cyclotide production. The current study indicates that some cyclotides in V. uliginosa are triggered in response to JA. The stress plant hormones can be used to enhance plant cell culture-based production systems.
  •  
2.
  • Slazak, Blazej, et al. (författare)
  • The involvement of cyclotides in mutual interactions of violets and the two-spotted spider mite
  • 2022
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants employ different chemicals to protect themselves from herbivory. These defenses may be constitutive or triggered by stress. The chemicals can be toxic, act as repellents, phagosuppressants and/or phago-deterrents. The two-spotted spider mite (Tetranychus urticae) is a generalist arthropod herbivorous pest and its feeding causes extensive damage both to crops and wild plants. Cyclotides are cyclic peptides involved in host-plant defenses. A single Viola sp. can produce more than a hundred cyclotides with different biological activities and roles. The organ and tissue specific cyclotide patterns change over the seasons and/or with environment, but the role of biotic/abiotic stress in shaping them remains unclear. Here, we demonstrate the involvement of cyclotides in mutual interactions between violets and mites. We used immunohistochemistry and mass spectrometry imaging to show the ingested cyclotides in T. urticae and assess the Viola odorata response to mite feeding. Moreover, to assess how mites are affected by feeding on violets, acceptance and reproductive performance was compared between Viola uliginosa, V. odorata and Phaseolus vulgaris. We demonstrate that cyclotides had been taken in by mites feeding on the violets. The ingested peptides were found in contact with epithelial cells of the mite digestive system, in the fecal matter, feces, ovary and eggs. Mites preferred common bean plants (P. vulgaris) to any of the violet species; the latter affected their reproductive performance. The production of particular cyclotides in V. odorata (denoted by molecular weights: 2979, 3001, 3017, 3068, 3084, 3123) was activated by mite feeding and their levels were significantly elevated compared to the control after 5 and 21 days of infestation. Specific cyclotides may affect mites by being indigestible or through direct interaction with cells in the mite digestive tract and reproductive organs. A group of particular peptides in V. odorata appears to be involved in defense response against herbivores.
  •  
3.
  • Slazak, Blazej, et al. (författare)
  • The life cycle of cyclotides : biosynthesis and turnover in plant cells
  • 2020
  • Ingår i: Plant Cell Reports. - : SPRINGER. - 0721-7714 .- 1432-203X. ; 39:10, s. 1359-1367
  • Tidskriftsartikel (refereegranskat)abstract
    • Key message Turnover rates have implications for understanding cyclotide biology and improving plant cell culture-based production systems. Cyclotides are a family of polypeptides recognized for a broad spectrum of bioactivities. The cyclic, cystine knot structural motif imparts these peptides with resistance to temperature, chemicals and proteolysis. Cyclotides are found widely distributed across the Violaceae and in five other plant families, where their presumed biological role is host defense. Violets produce mixtures of different cyclotides that vary depending on the organ, tissue or influence of environmental factors. In the present study, we investigated the biosynthesis and turnover of cyclotides in plant cells.Viola uliginosasuspension cultures were grown in media where all nitrogen containing salts were replaced with their(15)N counterparts. This approach combined with LC-MS analysis allowed to separately observe the production of(15)N-labelled peptides and decomposition of(14)N cyclotides present in the cells when switching the media. Additionally, we investigated changes in cyclotide content inV. odoratagerminating seeds. In the suspension cultures, the degradation rates varied for individual cyclotides and the highest was noted for cyO13. Rapid increase in production of(15)N peptides was observed until day 19 and subsequently, a plateau of production, indicating an equilibrium between biosynthesis and turnover. The developing seedling appeared to consume cyclotides present in the seed endosperm. We show that degradation processes shape the cyclotide pattern present in different tissues and environments. The results indicate that individual cyclotides play different roles-some in defense and others as storage proteins. The turnover of cyclotides should be accounted to improve cell culture production systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy