SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bagnall Andrew J.) "

Sökning: WFRF:(Bagnall Andrew J.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bagnall, Andrew J., et al. (författare)
  • Molecular Engineering of Electrocatalytic Nanomaterials for Hydrogen Evolution : The Impact of Structural and Electronic Modifications of Anchoring Linkers on Electrocatalysis
  • 2024
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 14:8, s. 5630-5638
  • Tidskriftsartikel (refereegranskat)abstract
    • The anticipated shortage of an increasing number of critical elements, especially metals, requires a shift toward molecularly defined materials with low metal loadings. More particularly, surface-anchored molecular catalysts are attractive to prospectively enable cost-effective electrochemical hydrogen evolution. However, the design of ligands integrating specific anchoring unit(s) for the immobilization of molecular catalysts can be challenging and has direct consequences for the intrinsic properties of the grafted complex. In this work, two cobalt tetraazamacrocyclic complexes bearing pyrene anchoring groups at different positions on the macrocyclic ligands were synthesized. The pyrene unit allows for simple immobilization and electrochemical characterization of the two complexes on multi-walled carbon nanotube-based electrodes. Thorough electrochemical and electrocatalytic investigation demonstrates important differences between the two closely related catalysts in terms of catalyst loading, catalytic response, and stability over time, with a significantly higher stability observed at pH 7 than at pH 2.
  •  
2.
  • Bagnall, Andrew J. (författare)
  • Novel electrode and photoelectrode materials for hydrogen production based on molecular catalysts
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The PhD project focussed on the application of a cobalt tetraazamacrocyclic complex, in the literature commonly referred to as [Co(CR)Cl2]+ as a molecular catalyst for the hydrogen evolution reaction (HER). This was within the broader scope of the EU MSCA H2020 ITN ‘eSCALED’ project, which primarily aimed to create artificial leaf devices for the storage of solar energy in chemical fuels and, as part of this, sought the development of novel bio-inspired and scalable materials. This included researching molecular catalysts without platinum group metals (PGMs) currently relied upon in commercial technology.Three main projects were pursued: firstly, studies of the mechanism of the catalyst itself under organic electrocatalytic conditions. Catalytic intermediates were generated and identified using spectroscopy (UV-vis, NMR, EPR) and the catalytic behaviour was followed with electrochemical techniques. An ECEC mechanism with a rate-determining second protonation step associated with the release of H2 was identified, noting in particular an initial protonation step on the macrocycle at the Co(II) state that was hypothesised to involve the macrocycle amine group acting as a proton relay under the investigated conditions.Secondly, a new synthetic strategy towards novel derivatives of [Co(CR)Cl2]+ was developed to prepare a derivative for anchoring onto sp2-carbon surfaces by pi-stacking interactions. The immobilised catalyst was studied by electrochemical methods and compared with another derivative from collaborators at ICIQ, showing that both derivatives work as heterogenised electrocatalysts for the HER with high faradaic efficiencies and good stability over one hour at pH 2 and especially pH 7, but one derivative displays higher current densities and stability, invoking some consideration of rational design principles for modifying molecular catalysts.Thirdly, studies of a photocatalytic system made up of copper indium sulfide quantum dots (CuInS2 QDs) as a photosensitiser with either [Co(CR)Cl2]+ or its benzoic acid-functionalised derivative were carried out in ascorbate buffer, focussing on the photocatalytic performance and electron transfer (ET) processes between the CuInS2 QDs and the catalyst to explain the remarkable activity and robustness reported for closely related systems. CuInS2 QDs modified to have a ‘hybrid-passivation’ ligand system for compatibility with NiO films were used. Rapid QD-catalyst ET processes were noted for both catalysts. A static binding model with a strong binding equilibrium was adapted for the system,  applying a Poisson distribution. This prompts a reconsideration of the importance of anchoring groups for QD-catalyst ET efficiency in solution.
  •  
3.
  • Bagnall, Andrew J., et al. (författare)
  • Ultrafast Electron Transfer from CuInS2 Quantum Dots to a Molecular Catalyst for Hydrogen Production : Challenging Diffusion Limitations
  • 2024
  • Ingår i: ACS Catalysis. - 2155-5435. ; 14:6, s. 4186-4201
  • Tidskriftsartikel (refereegranskat)abstract
    • Systems integrating quantum dots with molecular catalysts are attracting ever more attention, primarily owing to their tunability and notable photocatalytic activity in the context of the hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR). CuInS2 (CIS) quantum dots (QDs) are effective photoreductants, having relatively high-energy conduction bands, but their electronic structure and defect states often lead to poor performance, prompting many researchers to employ them with a core–shell structure. Molecular cobalt HER catalysts, on the other hand, often suffer from poor stability. Here, we have combined CIS QDs, surface-passivated with l-cysteine and iodide from a water-based synthesis, with two tetraazamacrocyclic cobalt complexes to realize systems which demonstrate high turnover numbers for the HER (up to >8000 per catalyst), using ascorbate as the sacrificial electron donor at pH = 4.5. Photoluminescence intensity and lifetime quenching data indicated a large degree of binding of the catalysts to the QDs, even with only ca. 1 μM each of QDs and catalysts, linked to an entirely static quenching mechanism. The data was fitted with a Poissonian distribution of catalyst molecules over the QDs, from which the concentration of QDs could be evaluated. No important difference in either quenching or photocatalysis was observed between catalysts with and without the carboxylate as a potential anchoring group. Femtosecond transient absorption spectroscopy confirmed ultrafast interfacial electron transfer from the QDs and the formation of the singly reduced catalyst (CoII state) for both complexes, with an average electron transfer rate constant of ≈ (10 ps)−1. These favorable results confirm that the core tetraazamacrocyclic cobalt complex is remarkably stable under photocatalytic conditions and that CIS QDs without inorganic shell structures for passivation can act as effective photosensitizers, while their smaller size makes them suitable for application in the sensitization of, inter alia, mesoporous electrodes.
  •  
4.
  • Grammatico, Domenico, et al. (författare)
  • Heterogenised Molecular Catalysts for Sustainable Electrochemical CO 2 Reduction
  • 2022
  • Ingår i: Angewandte Chemie International Edition. - : John Wiley & Sons. - 1433-7851 .- 1521-3773. ; 61:38
  • Forskningsöversikt (refereegranskat)abstract
    • There has been a rapid rise in interest regarding the advantages of support materials to protect and immobilise molecular catalysts for the carbon dioxide reduction reaction (CO2RR) in order to overcome the weaknesses of many well-known catalysts in terms of their stability and selectivity. In this Review, the state of the art of different catalyst-support systems for the CO2RR is discussed with the intention of leading towards standard benchmarking for comparison of such systems across the most relevant supports and immobilisation strategies, taking into account these multiple pertinent metrics, and also enabling clearer consideration of the necessary steps for further progress. The most promising support systems are described, along with a final note on the need for developing more advanced experimental and computational techniques to aid the rational design principles that are prerequisite to prospective industrial upscaling.
  •  
5.
  • Li, Cheng-Bo, et al. (författare)
  • Electrocatalytic reduction of protons to dihydrogen by the cobalt tetraazamacrocyclic complex [Co(N4H)Cl-2](+) : mechanism and benchmarking of performances
  • 2022
  • Ingår i: Sustainable Energy & Fuels. - : Royal Society of Chemistry (RSC). - 2398-4902. ; 6:1, s. 143-149
  • Tidskriftsartikel (refereegranskat)abstract
    • The cobalt tetraazamacrocyclic [Co(N4H)Cl-2](+) complex is becoming a popular and versatile catalyst for the electrocatalytic evolution of hydrogen, because of its stability and superior activity in aqueous conditions. We present here a benchmarking of its performances based on the thorough analysis of cyclic voltammograms recorded under various catalytic regimes in non-aqueous conditions allowing control of the proton concentration. This allowed a detailed mechanism to be proposed with quantitative determination of the rate-constants for the various protonation steps, as well as identification of the amine function of the tetraazamacrocyclic ligand to act as a proton relay during H-2 evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy