SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bagnato E.) "

Sökning: WFRF:(Bagnato E.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Labit, B., et al. (författare)
  • Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:8
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Institute of Physics Publishing. All rights reserved. Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.
  •  
4.
  • Coda, S., et al. (författare)
  • Physics research on the TCV tokamak facility: From conventional to alternative scenarios and beyond
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in-out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.
  •  
5.
  • Reimerdes, H., et al. (författare)
  • Overview of the TCV tokamak experimental programme
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
  •  
6.
  • Chellaï, O., et al. (författare)
  • Millimeter-wave beam scattering and induced broadening by plasma turbulence in the TCV tokamak
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 61:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The scattering of millimeter-wave beams from electron density fluctuations and the associated beam broadening are experimentally demonstrated. Using a dedicated setup, instantaneous deflection and (de-)focusing of the beam due to density blobs on the beam path are shown to agree with full-wave simulations. The detected time-averaged wave power transmitted through the turbulent plasma is reproduced by the radiative-transfer model implemented in the WKBeam code, which predicts a ∼50% turbulence-induced broadening of the beam cross-section. The role of core turbulence for the considered geometry is highlighted.
  •  
7.
  • Aiuppa, A., et al. (författare)
  • Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry
  • 2014
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 407, s. 134-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Pads (0.30 +/- 0.06, mean +/- SD), Rincon de la Vieja (27.0 +/- 15.3), and Turrialba (2.2 +/- 0.8) in Costa Rica, and at Telica (3.0 +/- 0.9) and San Cristobal (4.2 +/- 1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5 +/- 11.0 tons/day at Pods) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835 1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/S-T (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (similar to 3) relative to Costa Rica (similar to 0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from global arc volcanism.
  •  
8.
  •  
9.
  • Sadovykh, A., et al. (författare)
  • MegaM@Rt2 Project : Mega-Modelling at Runtime - Intermediate Results and Research Challenges
  • 2019
  • Ingår i: Lect. Notes Comput. Sci.. - Cham : Springer. - 9783030298517 ; , s. 393-405
  • Konferensbidrag (refereegranskat)abstract
    • MegaM@Rt2 Project is a major European effort towards the model-driven engineering of complex Cyber-Physical systems combined with runtime analysis. Both areas are dealt within the same methodology to enjoy the mutual benefits through sharing and tracking various engineering artifacts. The project involves 27 partners that contribute with diverse research and industrial practices addressing real-life case study challenges stemming from 9 application domains. These partners jointly progress towards a common framework to support those application domains with model-driven engineering, verification, and runtime analysis methods. In this paper, we present the motivation for the project, the current approach and the intermediate results in terms of tools, research work and practical evaluation on use cases from the project. We also discuss outstanding challenges and proposed approaches to address them. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy