SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bahnan Wael) "

Sökning: WFRF:(Bahnan Wael)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bahnan, Wael, et al. (författare)
  • A human monoclonal antibody bivalently binding two different epitopes in streptococcal M protein mediates immune function
  • 2023
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 15:2, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Group A streptococci have evolved multiple strategies to evade human antibodies, making it challenging to create effective vaccines or antibody treatments. Here, we have generated antibodies derived from the memory B cells of an individual who had successfully cleared a group A streptococcal infection. The antibodies bind with high affinity in the central region of the surface-bound M protein. Such antibodies are typically non-opsonic. However, one antibody could effectively promote vital immune functions, including phagocytosis and in vivo protection. Remarkably, this antibody primarily interacts through a bivalent dual-Fab cis mode, where the Fabs bind to two distinct epitopes in the M protein. The dual-Fab cis-binding phenomenon is conserved across different groups of M types. In contrast, other antibodies binding with normal single-Fab mode to the same region cannot bypass the M protein's virulent effects. A broadly binding, protective monoclonal antibody could be a candidate for anti-streptococcal therapy. Our findings highlight the concept of dual-Fab cis binding as a means to access conserved, and normally non-opsonic regions, regions for protective antibody targeting.
  •  
2.
  • Bahnan, Wael, et al. (författare)
  • Pathogenic Yersinia Promotes Its Survival by Creating an Acidic Fluid-Accessible Compartment on the Macrophage Surface
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial pathogens and host immune cells each initiate events following their interaction in an attempt to drive the outcome to their respective advantage. Here we show that the bacterial pathogen Yersinia pseudotuberculosis sustains itself on the surface of a macrophage by forming acidic fluid-accessible compartments that are partially bounded by the host cell plasma membrane. These Yersinia-containing acidic compartments (YACs) are bereft of the early endosomal marker EEA1 and the lysosomal antigen LAMP1 and readily form on primary macrophages as well as macrophage-like cell lines. YAC formation requires the presence of the Yersinia virulence plasmid which encodes a type III secretion system. Unexpectedly, we found that the initial formation of YACs did not require translocation of the type III effectors into the host cell cytosol; however, the duration of YACs was markedly greater in infections using translocation-competent Y. pseudotuberculosis strains as well as strains expressing the effector YopJ. Furthermore, it was in this translocation- and YopJ-dependent phase of infection that the acidic environment was critical for Y. pseudotuberculosis survival during its interaction with macrophages. Our findings indicate that during its extracellular phase of infection Y. pseudotuberculosis initiates and then, by a separate mechanism, stabilizes the formation of a highly intricate structure on the surface of the macrophage that is disengaged from the endocytic pathway.
  •  
3.
  • Bahnan, Wael, et al. (författare)
  • Spike-Dependent Opsonization Indicates Both Dose-Dependent Inhibition of Phagocytosis and That Non-Neutralizing Antibodies Can Confer Protection to SARS-CoV-2
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Spike-specific antibodies are central to effective COVID19 immunity. Research efforts have focused on antibodies that neutralize the ACE2-Spike interaction but not on non-neutralizing antibodies. Antibody-dependent phagocytosis is an immune mechanism enhanced by opsonization, where typically, more bound antibodies trigger a stronger phagocyte response. Here, we show that Spike-specific antibodies, dependent on concentration, can either enhance or reduce Spike-bead phagocytosis by monocytes independently of the antibody neutralization potential. Surprisingly, we find that both convalescent patient plasma and patient-derived monoclonal antibodies lead to maximum opsonization already at low levels of bound antibodies and is reduced as antibody binding to Spike protein increases. Moreover, we show that this Spike-dependent modulation of opsonization correlate with the outcome in an experimental SARS-CoV-2 infection model. These results suggest that the levels of anti-Spike antibodies could influence monocyte-mediated immune functions and propose that non-neutralizing antibodies could confer protection to SARS-CoV-2 infection by mediating phagocytosis.
  •  
4.
  • de Neergaard, Therese, et al. (författare)
  • Invasive Streptococcal Infection Can Lead to the Generation of Cross-Strain Opsonic Antibodies
  • 2022
  • Ingår i: Microbiology spectrum. - : American Society for Microbiology. - 2165-0497. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The human pathogen Streptococcus pyogenes causes substantial morbidity and mortality. It is unclear if antibodies developed after infections with this pathogen are opsonic and if they are strain specific or more broadly protective. Here, we quantified the opsonic-antibody response following invasive S. pyogenes infection. Four patients with S. pyogenes bacteremia between 2018 and 2020 at Skåne University Hospital in Lund, Sweden, were prospectively enrolled. Acute- and convalescent-phase sera were obtained, and the S. pyogenes isolates were genome sequenced ( emm118, emm85, and two emm1 isolates). Quantitative antibody binding and phagocytosis assays were used to evaluate isolate-dependent opsonic antibody function in response to infection. Antibody binding increased modestly against the infecting isolate and across emm types in convalescent- compared to acute-phase sera for all patients. For two patients, phagocytosis increased in convalescent-phase serum both for the infecting isolate and across types. The increase was only across types for one patient, and one had no improvement. No correlation to the clinical outcomes was observed. Invasive S. pyogenes infections result in a modestly increased antibody binding with differential opsonic capacity, both nonfunctional binding and broadly opsonic binding across types. These findings question the dogma that an invasive infection should lead to a strong type-specific antibody increase rather than a more modest but broadly reactive response, as seen in these patients. Furthermore, our results indicate that an increase in antibody titers might not be indicative of an opsonic response and highlight the importance of evaluating antibody function in S. pyogenes infections. IMPORTANCE The bacterium Streptococcus pyogenes is a common cause of both mild and severe human diseases resulting in substantial morbidity and mortality each year. No vaccines are available, and our understanding of the antibody response to this human pathogen is still incomplete. Here, we carefully analyzed the opsonic antibody response following invasive infection in four patients. Unexpectedly, the patients did not always generate opsonic antibodies against the specific infecting strain. Instead, we found that some patients could generate cross-opsonic antibodies, leading to phagocytosis of bacteria across strains. The emergence of cross-opsonic antibodies is likely important for long-term immunity against S. pyogenes. Our findings question the dogma that mostly strain-specific immunity is developed after infection and add to our overall understanding of how immunity to S. pyogenes can evolve.
  •  
5.
  • Engström, Patrik, et al. (författare)
  • Expansion of the Chlamydia trachomatis inclusion does not require bacterial replication
  • 2015
  • Ingår i: International Journal of Medical Microbiology. - : Elsevier BV. - 1438-4221 .- 1618-0607. ; 305:3, s. 378-382
  • Tidskriftsartikel (refereegranskat)abstract
    • Chlamydia trachomatis replication takes place inside of a host cell, exclusively within a vacuole known as the inclusion. During an infection, the inclusion expands to accommodate the increasing numbers of C. trachomatis. However, whether inclusion expansion requires bacterial replication and/or de novo protein synthesis has not been previously investigated in detail. Therefore, using a chemical biology approach, we herein investigated C. trachomatis inclusion expansion under varying conditions in vitro. Under normal cell culture conditions, inclusion expansion correlated with C trachomatis replication. When bacterial replication was inhibited using KSK120: an inhibitor that targets C. trachomatis glucose metabolism, inclusions expanded even in the absence of bacterial replication. In contrast, when bacterial protein synthesis was inhibited using chloramphenicol, expansion of inclusions was blocked. Together, these data suggest that de novo protein synthesis is necessary, whereas bacterial replication is dispensable for C trachomatis inclusion expansion. (C) 2015 The Authors. Published by Elsevier GmbH.
  •  
6.
  • Good, James A. D., 1985-, et al. (författare)
  • Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity
  • 2016
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 59:5, s. 2094-2108
  • Tidskriftsartikel (refereegranskat)abstract
    • The bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 <= 100 nM) in attenuating infectivity across multiple serovars of C. trachomatis without host cell toxicity. The lead compound 21a exhibits reduced lipophilicity versus 1 and did not affect the growth or viability of representative commensal flora at 50 mu M. In microscopy studies, a highly active fluorescent analogue 37 localized inside the parasitiphorous inclusion, indicative of a specific targeting of bacterial components. In summary, we present a class of small molecules to enable the development of specific treatments for C. trachomatis.
  •  
7.
  • Good, James A. D., et al. (författare)
  • Thiazolino 2-pyridone amide isosteres as inhibitors of Chlamydia trachomatis infectivity
  • 2017
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 60:22, s. 9393-9399
  • Tidskriftsartikel (refereegranskat)abstract
    • Chlamydia trachomatis is a global health burden due to its prevalence as a sexually transmitted disease and as the causative agent of the eye infection trachoma. We recently discovered 3-amido thiazolino 2-pyridones which attenuated C. trachomatis infectivity without affecting host cell or commensal bacteria viability. We present here the synthesis and evaluation of nonhydrolyzable amide isosteres based on this class, leading to highly potent 1,2,3-triazole based infectivity inhibitors (EC50 ≤ 20 nM).
  •  
8.
  •  
9.
  • Izadi, Arman, et al. (författare)
  • Subclass-switched anti-Spike IgG3 oligoclonal cocktails strongly enhance Fc-mediated opsonization
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences. - 1091-6490. ; 120:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibodies play a central role in the immune defense against SARS-CoV-2. Emerging evidence has shown that nonneutralizing antibodies are important for immune defense through Fc-mediated effector functions. Antibody subclass is known to affect downstream Fc function. However, whether the antibody subclass plays a role in anti-SARS-CoV-2 immunity remains unclear. Here, we subclass-switched eight human IgG1 anti-spike monoclonal antibodies (mAbs) to the IgG3 subclass by exchanging their constant domains. The IgG3 mAbs exhibited altered avidities to the spike protein and more potent Fc-mediated phagocytosis and complement activation than their IgG1 counterparts. Moreover, combining mAbs into oligoclonal cocktails led to enhanced Fc- and complement receptor-mediated phagocytosis, superior to even the most potent single IgG3 mAb when compared at equivalent concentrations. Finally, in an in vivo model, we show that opsonic mAbs of both subclasses can be protective against a SARS-CoV-2 infection, despite the antibodies being nonneutralizing. Our results suggest that opsonic IgG3 oligoclonal cocktails are a promising idea to explore for therapy against SARS-CoV-2, its emerging variants, and potentially other viruses.
  •  
10.
  • Izadi, Arman, et al. (författare)
  • The hinge-engineered IgG1-IgG3 hybrid subclass IgGh47 potently enhances Fc-mediated function of anti-streptococcal and SARS-CoV-2 antibodies
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3’s Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy