SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baken Stijn) "

Sökning: WFRF:(Baken Stijn)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baken, Stijn, et al. (författare)
  • Characterisation of hydrous ferric oxides derived from iron-rich groundwaters and their contribution to the suspended sediment of streams
  • 2013
  • Ingår i: Applied Geochemistry. - : Elsevier BV. - 0883-2927 .- 1872-9134. ; 39, s. 59-68
  • Tidskriftsartikel (refereegranskat)abstract
    • When Fe(II) bearing groundwaters surface in streams, particulate authigenic Fe-rich material is produced by oxidation. Such freshly precipitated Fe minerals may be transported as suspended sediment and have a profound impact on the fate of trace metals and nutrients in rivers. The objective of this study was to monitor changes in mineralogy and composition of authigenic material from its source to streams of increasing order. Groundwaters, surface waters, and suspended sediment in streams of different order were sampled in the Kleine Nete catchment (Belgium), a lowland with Fe-rich groundwaters (3.5-53.8 mg Fe/L; pH 6.3-6.9). Fresh authigenic material (>0.45 mu m) was produced by oxidising filtered (<0.45 mu m) groundwater and surface water. This material contained, on average, 44% Fe, and smaller concentrations of C, P, and Ca. Iron EXAFS (Extended X-ray Absorption Fine Structure) spectroscopy showed that the Fe was present as poorly crystalline hydrous ferric oxides with a structure similar to that of ferrihydrite. The Fe concentration in the suspended sediment samples decreased to 36-40% (stream order 2), and further to 18-26% (stream order 4 and 5). Conversely, the concentrations of organic C, Ca, Si, and trace metals increased with increasing stream order, suggesting mixing of authigenic material with suspended sediment from a different source. The Fe speciation in the suspended sediment was similar to that in fresh authigenic material, but more Fe-Fe interactions were observed, i.e. it was increasingly hydrolysed, suggesting ageing reactions. The suspended sediment in the streams of order 4 and 5 is estimated to contain between 31% and 59% of authigenic material, but more data are needed to refine this estimate. The authigenic material is an important sink for P in these streams which may alleviate the eutrophication risk in this catchment.
  •  
2.
  • Baken, Stijn, et al. (författare)
  • The association between iron and carbon in freshwater colloids
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • Iron and carbon are important constituents of natural colloids, which intimately links the fate of these two elements in riverine systems. Iron may strongly affect the binding of trace metals by organic matter, e.g. through competition for binding sites, which highlights the importance of a correct appreciation of the Fe speciation in surface waters. However, the chemistry of Fe and C in natural colloids is complex and depend on many factors including the pH, the Fe:C ratio, and the redox speciation of Fe [1-3]. Two areas with a contrasting Fe chemistry were studied: a lowland area with widespread seepage of iron-rich groundwater, and an upland peat area. Samples of ten oxic, well-mixed streams were subjected to cascade filtration using conventional filtration (1.2 µm, 0.45 µm, 0.1 µm) and cross-flow ultrafiltration (CFF; 5 kDa). The colloidal fraction, here operationally defined as between 0.45 µm and 5 kDa, was isolated by CFF and subsequently freeze-dried. The speciation of colloidal Fe was determined by EXAFS spectroscopy at the Fe K-edge (MAX-lab, Lund, Sweden). In the rivers draining upland peat, Fe and C were predominantly recovered in the fraction between 5 kDa and 0.1 µm. Conversely, in the rivers draining the lowland with extensive seepage of iron-rich groundwater, Fe was most abundant in the > 0.1 µm fraction, whereas C was predominantly present < 0.1 µm. The EXAFS data reveal that colloidal Fe speciation is different in both study areas. It exists as mononuclear Fe complexed by dissolved organic matter, as colloidal hydrous ferric oxides (likely stabilized by adsorbed organic matter), or as a mixture of these. The colloidal Fe concentrations show considerable seasonal variability. Overall, this study contributes to a better understanding of colloidal Fe speciation and of its interaction with organic C.
  •  
3.
  • Larsson, Maja, et al. (författare)
  • Vanadium bioavailability and toxicity to soil microorganisms and plants
  • 2013
  • Ingår i: Environmental Toxicology and Chemistry. - : Society of Environmental Toxicology and Chemistry (SETAC). - 0730-7268 .- 1552-8618. ; 32:10, s. 2266-2273
  • Tidskriftsartikel (refereegranskat)abstract
    • Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200mgVkg(-1)) of dissolved vanadate, and toxicity was measured with 2 microbial and 3 plant assays. The median effective concentration (EC50) thresholds of the microbial assays ranged from 28mg added V kg(-1) to 690mg added V kg(-1), and the EC50s in the plant assays ranged from 18mg added V kg(-1) to 510mg added V kg(-1). The lower thresholds were in the concentration range of the background vanadium in the untreated control soils (15-58mgVkg(-1)). The vanadium toxicity to plants decreased with a stronger soil vanadium sorption strength. The EC50 values for plants expressed on a soil solution basis ranged from 0.8mgV L-1 to 15mgV L-1 and were less variable among soils than corresponding values based on total vanadium in soil. It is concluded that sorption decreases the toxicity of added vanadate and that soil solution vanadium is a more robust measure to determine critical vanadium concentrations across soils. Environ Toxicol Chem 2013;32:2266-2273. (c) 2013 SETAC
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy