SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baldeschi A.) "

Sökning: WFRF:(Baldeschi A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coppejans, D. L., et al. (författare)
  • A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 895:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present X-ray and radio observations of the Fast Blue Optical Transient CRTS-CSS161010 J045834-081803 (CSS161010 hereafter) at t = 69-531 days. CSS161010 shows luminous X-ray (L-x similar to 5 x 10(39) erg s(-1)) and radio (L-nu similar to 10(29) erg s(-1) Hz(-1)) emission. The radio emission peaked at similar to 100 days post-transient explosion and rapidly decayed. We interpret these observations in the context of synchrotron emission from an expanding blast wave. CSS161010 launched a mildly relativistic outflow with velocity Gamma beta c >= 0.55c at similar to 100 days. This is faster than the non-relativistic AT 2018cow (Gamma beta c similar to 0.1c) and closer to ZTF18abvkwla (Gamma beta c >= 0.3c at 63 days). The inferred initial kinetic energy of CSS161010 (E-k greater than or similar to 10(51) erg) is comparable to that of long gamma-ray bursts, but the ejecta mass that is coupled to the mildly relativistic outflow is significantly larger (similar to 0.01-.1 M-circle dot). This is consistent with the lack of observed gamma-rays. The luminous X-rays were produced by a different emission component to the synchrotron radio emission. CSS161010 is located at similar to 150 Mpc in a dwarf galaxy with stellar mass M-* similar to 10(7) M-circle dot and specific star formation rate sSFR similar to 0.3 Gyr(-1). This mass is among the lowest inferred for host galaxies of explosive transients from massive stars. Our observations of CSS161010 are consistent with an engine-driven aspherical explosion from a rare evolutionary path of a H-rich stellar progenitor, but we cannot rule out a stellar tidal disruption event on a centrally located intermediate-mass black hole. Regardless of the physical mechanism, CSS161010 establishes the existence of a new class of rare (rate < 0.4% of the local core-collapse supernova rate) H-rich transients that can launch mildly relativistic outflows.
  •  
2.
  • Elia, Davide, et al. (författare)
  • The Hi-GAL compact source catalogue - II. The 360° catalogue of clump physical properties
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 504:2, s. 2742-2766
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the 360° catalogue of physical properties of Hi-GAL compact sources, detected between 70 and 500 $\mu$m. This release not only completes the analogous catalogue previously produced by the Hi-GAL collaboration for -71° 2 á 2 67°, but also meaningfully improves it because of a new set of heliocentric distances, 120 808 in total. About a third of the 150 223 entries are located in the newly added portion of the Galactic plane. A first classification based on detection at 70 $\mu$m as a signature of ongoing star-forming activity distinguishes between protostellar sources (23 per cent of the total) and starless sources, with the latter further classified as gravitationally bound (pre-stellar) or unbound. The integral of the spectral energy distribution, including ancillary photometry from λ = 21 to 1100 $\mu$m, gives the source luminosity and other bolometric quantities, while a modified blackbody fitted to data for $\lambda \ge 160∼\mu$m yields mass and temperature. All tabulated clump properties are then derived using photometry and heliocentric distance, where possible. Statistics of these quantities are discussed with respect to both source Galactic location and evolutionary stage. No strong differences in the distributions of evolutionary indicators are found between the inner and outer Galaxy. However, masses and densities in the inner Galaxy are on average significantly larger, resulting in a higher number of clumps that are candidates to host massive star formation. Median behaviour of distance-independent parameters tracing source evolutionary status is examined as a function of the Galactocentric radius, showing no clear evidence of correlation with spiral arm positions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy