SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ballarotta Maxime) "

Sökning: WFRF:(Ballarotta Maxime)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ballarotta, Maxime, 1984-, et al. (författare)
  • A Last Glacial Maximum world-ocean simulation at eddy-permitting resolution – Part 1: Experimental design and basic evaluation
  • 2013
  • Ingår i: Climate of the Past Discussions. - : Copernicus GmbH. - 1814-9340 .- 1814-9359. ; 9, s. 297-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Most state-of-the-art climate models include a coarsely resolved oceanic compo- nent, which has difficulties in capturing detailed dynamics, and therefore eddy- permitting/eddy-resolving simulations have been developed to reproduce the observed World Ocean. In this study, an eddy-permitting numerical experiment is conducted to simulate the global ocean state for a period of the Last Glacial Maximum (LGM, ∼26500 to 19000yr ago) and to investigate the improvements due to taking into account these higher spatial scales. The ocean general circulation model is forced by a 49-yr sample of LGM atmospheric fields constructed from a quasi-equilibrated climate-model simulation. The initial state and the bottom boundary condition conform to the Paleoclimate Modelling Intercomparison Project (PMIP) recommendations. Be- fore evaluating the model efficiency in representing the paleo-proxy reconstruction of the surface state, the LGM experiment is in this first part of the investigation, compared with a present-day eddy-permitting hindcast simulation as well as with the available PMIP results. It is shown that the LGM eddy-permitting simulation is consistent with the quasi-equilibrated climate-model simulation, but large discrepancies are found with the PMIP model analyses, probably due to the different equilibration states. The strongest meridional gradients of the sea-surface temperature are located near 40° N and S, this due to particularly large North-Atlantic and Southern-Ocean sea-ice covers. These also modify the locations of the convection sites (where deep-water forms) and most of the LGM Conveyor Belt circulation consequently takes place in a thinner layer than today. Despite some discrepancies with other LGM simulations, a glacial state is captured and the eddy-permitting simulation undertaken here yielded a useful set of data for comparisons with paleo-proxy reconstructions. 
  •  
2.
  • Ballarotta, Maxime, 1984-, et al. (författare)
  • A Last Glacial Maximum World-Ocean simulation at eddy-permitting resolution – Part 2: Confronting the paleo-proxy data
  • 2013
  • Ingår i: Climate of the Past Discussions. - : Copernicus GmbH. - 1814-9340 .- 1814-9359. ; 9, s. 329-350
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous investigations concerning the design of an eddy-permitting LGM oceanic sim- ulation are here extended with focus on whether this type of simulation is capable of improving the numerical results with regard to the available paleo-proxy reconstructions. Consequently, an eddy-permitting and two coarse-grid simulations of the same LGM period are confronted with a dataset from the Multiproxy Approach for the Recon- struction of the Glacial Ocean Sea Surface Temperatures (MARGO SSTs) and a num- ber of sea-ice reconstructions. From a statistical analysis it was found that the eddy- permitting simulation does not significantly improve the SST representation with regard to the paleo-reconstructions. The western boundary currents are better resolved in the high-resolution experiment than in the coarse simulations, but, although these more detailed SST structures yield a locally improved consistency between modelled pre- dictions and proxies, they do not contribute significantly to the global statistical score. As in the majority of the PMIP2 simulations, the modelled sea-ice conditions are still inconsistent with the paleo-reconstructions, probably due to the choice of the model equilibrium. 
  •  
3.
  • Ballarotta, Maxime, et al. (författare)
  • Last Glacial Maximum world ocean simulations at eddy-permitting and coarse resolutions : do eddies contribute to a better consistency between models and palaeoproxies?
  • 2013
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 9:6, s. 2669-2686
  • Tidskriftsartikel (refereegranskat)abstract
    • Most state-of-the-art climate models include a coarsely resolved oceanic component, which hardly captures detailed dynamics, whereas eddy-permitting and eddy-resolving simulations are developed to reproduce the observed ocean. In this study, an eddy-permitting and a coarse resolution numerical experiment are conducted to simulate the global ocean state for the period of the Last Glacial Maximum (LGM, similar to 26 500 to 19 000 yr ago) and to investigate the improvements due to taking into account the smaller spatial scales. The ocean state from each simulation is confronted with a data set from the Multiproxy Approach for the Reconstruction of the Glacial Ocean (MARGO) sea surface temperatures (SSTs), some reconstructions of the palaeo-circulations and a number of sea-ice reconstructions. The western boundary currents and the Southern Ocean dynamics are better resolved in the high-resolution experiment than in the coarse simulation, but, although these more detailed SST structures yield a locally improved consistency between model predictions and proxies, they do not contribute significantly to the global statistical score. The SSTs in the tropical coastal upwelling zones are also not significantly improved by the eddy-permitting regime. The models perform in the mid-latitudes but as in the majority of the Paleo-climate Modelling Intercomparison Project simulations, the modelled sea-ice conditions are inconsistent with the palaeo-reconstructions. The effects of observation locations on the comparison between observed and simulated SST suggest that more sediment cores may be required to draw reliable conclusions about the improvements introduced by the high resolution model for reproducing the global SSTs. One has to be careful with the interpretation of the deep ocean state which has not reached statistical equilibrium in our simulations. However, the results indicate that the meridional overturning circulations are different between the two regimes, suggesting that the model parametrizations might also play a key role for simulating past climate states.
  •  
4.
  • Ballarotta, Maxime, et al. (författare)
  • On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater
  • 2014
  • Ingår i: Ocean Science. - Gottingen : Copernicus Publications. - 1812-0784 .- 1812-0792. ; 10:6, s. 907-921
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude–salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimate of the timescale of the circulation reveals a sluggish abyssal circulation during the LGM, and a Conveyor Belt circulation that is more vigorous due to the combination of a stronger wind stress and a shortened circulation route.
  •  
5.
  • Ballarotta, Maxime, 1984-, et al. (författare)
  • The residual circulation of the Southern Ocean : Which spatio-temporal scales are needed?
  • 2013
  • Ingår i: Ocean Modelling. - : Elsevier BV. - 1463-5003 .- 1463-5011. ; 64, s. 46-55
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Ocean circulation consists of a complicated mixture of processes and phenomena that arise at different time and spatial scales which need to be parametrized in the state-of-the-art climate models. The temporal and spatial scales that give rise to the present-day residual mean circulation are here inves- tigated by calculating the Meridional Overturning Circulation (MOC) in density coordinates from an eddy-permitting global model. The region sensitive to the temporal decomposition is located between 38°S and 63°S, associated with the eddy-induced transport. The ‘‘Bolus’’ component of the residual circu- lation corresponds to the eddy-induced transport. It is dominated by timescales between 1 month and 1 year. The temporal behavior of the transient eddies is examined in splitting the ‘‘Bolus’’ component into a ‘‘Seasonal’’, an ‘‘Eddy’’ and an ‘‘Inter-monthly’’ component, respectively representing the correlation between density and velocity fluctuations due to the average seasonal cycle, due to mesoscale eddies and due to large-scale motion on timescales longer than one month that is not due to the seasonal cycle. The ‘‘Seasonal’’ bolus cell is important at all latitudes near the surface. The ‘‘Eddy’’ bolus cell is dominant in the thermocline between 50°S and 35°S and over the whole ocean depth at the latitude of the Drake Passage. The ‘‘Inter-monthly’’ bolus cell is important in all density classes and is maximal in the Brazil– Malvinas Confluence and the Agulhas Return Current. The spatial decomposition indicates that a large part of the Eulerian mean circulation is recovered for spatial scales larger than 11.25°, implying that small-scale meanders in the Antarctic Circumpolar Current (ACC), near the Subantarctic and Polar Fronts, and near the Subtropical Front are important in the compensation of the Eulerian mean flow. 
  •  
6.
  • Ballarotta, Maxime, 1984- (författare)
  • The thermohaline circulation during the Last Glacial Maximum and in the Present-Day climate
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The thermohaline circulation (THC) corresponds to the large time- and spatial-scales ocean circulation associated with the transport of heat and salt, and is known to be an important factor controlling the climate variability. The large scales involved in the THC make it difficult to observe, and therefore the synergy of numerical models and climate proxy reconstructions is particularly relevant to study the characteristics of this circulation in the present and past climates.In this doctoral thesis, the THC during the Last Glacial Maximum (LGM) and the Present-Day (PD) is explored using a state-of-the-art Ocean General Circulation Model in its high- and low-resolution regimes. By comparing the LGM model outputs with the paleo-proxy reconstructions, it is shown that the high-resolution simulation improves the representation of the sea surface tem- peratures in the regions where the current structures appear to be complex, i.e., the western boundary currents (Agulhas, Kuroshio, Gulf Stream) and the Antarctic Circumpolar Current, although statistical comparisons with paleo- proxy reconstructions are not significantly improved on a global scale.The THC involves a superposition of processes acting at widely different spatial and temporal scales, from the geostrophic large-scale and slowly-varying flow to the mesoscale turbulent eddies and at even smaller-scale, the mixing generated by the internal wave field. Not all these processes can be properly resolved in numerical models, and thus need to be parameterized. Analyzing the THC in an eddy-permitting numerical model, it was found that the temporal scales required for diagnosing the Southern Ocean circulation should not exceed 1 month and the spatial scales needed to be taken into account must be smaller than 1°. Important changes in the nature and intensity of the THC were observed between the LGM and PD simulations. An estimation of the turnover times (i.e., the time it takes for the water parcel to make and entire loop on the Conveyor Belt) revealed that the LGM THC could be more vigorous than under the PD conditions. As a result, the ocean transports of heat and freshwater, the oceanic uptake of CO2, the ventilation of the deep ocean and the reorganization of the passive and active tracers (e.g., temperature, salinity, greenhouse gases, nutrients) can be altered in these different regimes.
  •  
7.
  • Ballarotta, Maxime, 1984-, et al. (författare)
  • The vigorous large-scale ocean circulations during the Last Glacial Maximum
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The representation of the ocean thermohaline circulation (THC) under glacial and interglacial climate conditions is investigated using a new global thermohaline stream function. Consequently, the interglacial and glacial THCs are compared from two experiments based on an ocean general circulation model forced at the surface by conditions representing the present-day and the period of the Last Glacial Maximum (LGM, ≈ 21kyr ago). It is shown  that the LGM THC is amplified by the salinity/density contrast between the Atlantic and the Pacific basins, as well as in the abyss due to larger salinity gradients. Even though the circuit along the Conveyor Belt loop is not drastically changed, the water mass transformations can regionally differ between the two periods. Additionally, the LGM Conveyor Belt Cell is more  isolated from the abyss and its turnover time is between two and three times shorter than in the present-day simulation, suggesting vigorous large-scale circulation. 
  •  
8.
  • Döös, Kristofer, et al. (författare)
  • The world ocean thermohaline circulation
  • 2012
  • Ingår i: Journal of Physical Oceanography. - 0022-3670 .- 1520-0485. ; 42:9, s. 1445-1460
  • Tidskriftsartikel (refereegranskat)abstract
    • A new global streamfunction is presented and denoted the thermohaline streamfunction. This is defined as the volume transport in terms of temperature and salinity (hence no spatial variables). The streamfunction is used to analyze and quantify the entire World Ocean conversion rate between cold/warm and fresh/saline waters. It captures two main cells of the global thermohaline circulation, one corresponding to the conveyor belt and one corresponding to the shallow tropical circulation. The definition of a thermohaline streamfunction also enables a new method of estimating the turnover time as well as the heat and freshwater transports of the conveyor belt. The overturning time of the conveyor belt is estimated to be between 1000 and 2000 yr, depending on the choice of stream layer. The heat and freshwater transports of these two large thermohaline cells have been calculated by integrating the thermohaline streamfunction over the salinity or temperature, yielding a maximum heat transport of the conveyor belt of 1.2 PW over the 34.2-PSU salinity surface and a freshwater transport of 0.8 Sv (1 Sv = 10(6) m(3) s(-1)) over the 9 degrees C isotherm. This is a measure of the net interocean exchange of heat between the Atlantic and Indo-Pacific due to the thermohaline circulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy