SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Balslev Henrik) "

Sökning: WFRF:(Balslev Henrik)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balslev, Henrik, et al. (författare)
  • Palm community transects and soil properties in western Amazonia
  • 2019
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 100:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Western Amazonia is a global biodiversity hotspot that encompasses extensive variation in geologic, climatic, and biotic features. Palms (Arecaceae) are among the most diverse and iconic groups of plants in the region with more than 150 species that exhibit extraordinary variation of geographical distributions, regional abundance patterns, and life history strategies and growth forms, and provide myriad ecosystem services. Understanding the ecological and evolutionary drivers that underpin palm distribution and abundance patterns may shed light on the evolution and ecology of the tropical forest biomes more generally. Edaphic conditions, in particular, are increasingly recognized as critical drivers of tropical plant diversity and distributions but data deficiencies inhibit our understanding of plant-soil relationships at broad scales, especially in the tropics. We present data from 546, 0.25-ha (5 x 500 m) georeferenced transects located throughout western Amazonia where all individual palms were identified, counted, and assigned to a life-history stage. Several environmental covariates were recorded along each transect and surface soil samples were collected from multiple points in N = 464 of transects. Altogether, the transects include 532,602 individuals belonging to 135 species. Variation among transects in terms of palm species richness and abundance is associated with major habitat types and soil properties. The soil properties including pH, acidity, all macronutrients for all samples, and texture, carbon, nitrogen, and micronutrients for some transects vary substantially across the study area, providing insight to broad-scale variation of tropical surface soils. The data provided here will help advance our understanding of plant distributions and abundance patterns, and associations with soil conditions. No copyright restrictions are associated with this data set but please cite this paper if data are used for publication.
  •  
2.
  • Bødker, Anders, et al. (författare)
  • Estrogen receptors in the human male bladder, prostatic urethra, and prostate. An immunohistochemical and biochemical study
  • 1995
  • Ingår i: Scandinavian Journal of Urology and Nephrology. - : Informa UK Limited. - 0036-5599 .- 1651-2065. ; 29:2, s. 161-165
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution and quantity of estrogen receptors (ERs) in the human male bladder, prostatic urethra and the prostate were studied in eight males with recurrent papillomas of the bladder or monosymptomatic hematuria (median age 61 years), 14 men undergoing transurethral resection due to benign prostatic hyperplasia (median age 70 years), and nine men undergoing cystectomy due to malignant tumour of the bladder (median age 70 years). In the first group of patients, biopsies for immunohistochemical examination were obtained from the bladder vault, bottom, both side-walls, the trigone area, and the mid-portion of the prostatic urethra, and in the second group from three locations of the prostatic urethra (bladder neck, mid-portion and veramontanum). In the third group, tissue specimens were taken from the vault of the bladder, prostatic urethra, and the prostate, for immunohistochemical as well as biochemical analysis. In the first group, ERs were found in three out of eight specimens of the prostatic urethra, and in one of these, ERs were confined to periurethral glands. ERs could not be demonstrated in any of the bladder-biopsies. In the second group, ERs were not found in the bladder neck, but were seen in four preparations from the veramontanum and in two from the midportion of the urethra. ERs were located in the urothelium and periurethral glands. In the third group, ERs were seen immunohistochemically in the prostatic urethra (two cases) and the prostatic stromal tissue (two cases). ERs could be demonstrated in the bladder neither by immunohistochemistry nor biochemically.(ABSTRACT TRUNCATED AT 250 WORDS)
  •  
3.
  • Cooper, Declan L.M., et al. (författare)
  • Consistent patterns of common species across tropical tree communities
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 728-734
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
  •  
4.
  •  
5.
  • Householder, John Ethan, et al. (författare)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • Ingår i: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
6.
  • Lehtonen, Samuli, et al. (författare)
  • Edaphic heterogeneity and the evolutionary trajectory of Amazonian plant communities
  • 2021
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 11:24, s. 17672-17685
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated how the phylogenetic structure of Amazonian plant communities varies along an edaphic gradient within the non-inundated forests. Forty localities were sampled on three terrain types representing two kinds of soil: clayey soils of a high base cation concentration derived from the Solimoes formation, and loamy soils with lower base cation concentration derived from the Ica formation and alluvial terraces. Phylogenetic community metrics were calculated for each locality for ferns and palms both with ferns as one group and for each of three fern clades with a crown group age comparable to that of palms. Palm and fern communities showed significant and contrasting phylogenetic signals along the soil gradient. Fern species richness increased but standard effect size of mean pairwise distance (SES.MPD) and variation of pairwise distances (VPD) decreased with increasing soil base cation concentration. In contrast, palm communities were more species rich on less cation-rich soils and their SES.MPD increased with soil base cation concentration. Species turnover between the communities reflected the soil gradient slightly better when based on species occurrences than when phylogenetic distances between the species were considered. Each of the three fern subclades behaved differently from each other and from the entire fern clade. The fern clade whose phylogenetic patterns were most similar to those of palms also resembled palms in being most species-rich on cation-poor soils. The phylogenetic structuring of local plant communities varies along a soil base cation concentration gradient within non-inundated Amazonian rain forests. Lineages can show either similar or different phylogenetic community structure patterns and evolutionary trajectories, and we suggest this to be linked to their environmental adaptations. Consequently, geological heterogeneity can be expected to translate into a potentially highly diverse set of evolutionarily distinct community assembly pathways in Amazonia and elsewhere.
  •  
7.
  • Lindman, Henrik, et al. (författare)
  • A randomised study of tailored toxicity-based dosage of fluorouracil-epirubicin-cyclophosphamide chemotherapy for early breast cancer (SBG 2000-1)
  • 2018
  • Ingår i: European Journal of Cancer. - : Elsevier BV. - 0959-8049 .- 1879-0852. ; 94, s. 79-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Study aim: Retrospective studies have demonstrated a worse outcome in breast cancer patients not developing leukopenia during adjuvant chemotherapy. The SBG 2000-1 is the first randomised trial designed to compare individually dosed chemotherapy without G-CSF support based on grade of toxicity to standard-dosed chemotherapy based on body surface area (BSA). Methods: Patients with early breast cancer were included and received the first cycle of standard FEC (fluorouracil 600 mg/m2, epirubicin 60 mg/m2, cyclophosphamide 600 mg/m2). Patients with nadir leukopenia grade 0–2 after first cycle were randomised between either 6 additional courses of tailored FEC with increased doses (E 75–90 mg/m2, C 900–1200 mg/m2) or fixed treatment with 6 standard FEC. Patients with grade 3–4 leukopenia were registered and treated with 6 standard FEC. Primary end-point was distant disease-free survival (DDFS). Results: The study enrolled 1535 patients, of which 1052 patients were randomised to tailored FEC (N = 524) or standard FEC (N = 528), whereas 401 patients with leukopenia grade 3–4 continued standard FEC and formed the registered cohort. Dose escalation did not statistically significantly improve 10-year DDFS (79% and 77%, HR 0.87, CI 0.67–1.14, P = 0.32) or OS (82% and 78%, respectively, HR 0.89, CI 0.57–1.16, P = 0.38). Corresponding estimates for the registered group of patients were DDFS 79% and OS 82%, respectively. Conclusions: The SBG 2000-1 study failed to show a statistically significant improvement of escalated and tailored-dosed chemotherapy compared with standard BSA-based chemotherapy in patients with low haematological toxicity, although all efficacy parameters showed a numerical advantage for tailored treatment.
  •  
8.
  • Luize, Bruno Garcia, et al. (författare)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • Ingår i: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
9.
  • Muscarella, Robert, et al. (författare)
  • The global abundance of tree palms
  • 2020
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
10.
  • ter Steege, Hans, et al. (författare)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • Ingår i: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (10)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Balslev, Henrik (8)
ter Steege, Hans (5)
Barlow, Jos (5)
Berenguer, Erika (5)
Andrade, Ana (5)
Arroyo, Luzmila (5)
visa fler...
Castilho, Carolina V ... (5)
Comiskey, James A. (5)
Costa, Flávia R.C. (5)
Di Fiore, Anthony (5)
Malhi, Yadvinder (4)
Phillips, Oliver L. (4)
Muscarella, Robert (4)
Carvalho, Fernanda A ... (4)
Damasco, Gabriel, 19 ... (4)
de Aguiar, Daniel P. ... (4)
Ahuite Reategui, Man ... (4)
Albuquerque, Bianca ... (4)
Alonso, Alfonso (4)
do Amaral, Dário Dan ... (4)
do Amaral, Iêda Leão (4)
de Andrade Miranda, ... (4)
Araujo-Murakami, Ale ... (4)
Aymard C, Gerardo A. (4)
Baider, Cláudia (4)
Bánki, Olaf S. (4)
Baraloto, Chris (4)
Barbosa, Edelcilio M ... (4)
Barbosa, Flávia Rodr ... (4)
Brienen, Roel (4)
Camargo, José Luís (4)
Campelo, Wegliane (4)
Cano, Angela (4)
Cárdenas, Sasha (4)
Carrero Márquez, Yrm ... (4)
Castellanos, Hernán (4)
Cerón, Carlos (4)
Chave, Jerome (4)
Correa, Diego F. (4)
Dallmeier, Francisco (4)
Dávila Doza, Hilda P ... (4)
Demarchi, Layon O. (4)
Dexter, Kyle G. (4)
Salomao, Rafael P. (4)
Magnusson, William E ... (4)
Pitman, Nigel C. A. (4)
Feldpausch, Ted R. (4)
Killeen, Timothy J. (4)
Schietti, Juliana (4)
Laurance, William F. (4)
visa färre...
Lärosäte
Uppsala universitet (5)
Göteborgs universitet (4)
Linköpings universitet (1)
Lunds universitet (1)
Karolinska Institutet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy