SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bana Alexandru Sabin) "

Sökning: WFRF:(Bana Alexandru Sabin)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bana, Alexandru-Sabin, et al. (författare)
  • Massive MIMO for Internet of Things (IoT) connectivity
  • 2019
  • Ingår i: Physical Communication. - : ELSEVIER. - 1874-4907 .- 1876-3219. ; 37
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO is essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design. (C) 2019 Elsevier B.V. All rights reserved.
  •  
2.
  • Popovski, Petar, et al. (författare)
  • Wireless Access for Ultra-Reliable Low-Latency Communication (URLLC): Principles and Building Blocks
  • 2018
  • Ingår i: IEEE Network. - 1558-156X .- 0890-8044. ; 32:2, s. 16-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-reliable low latency communication (URLLC) is an important new feature brought by 5G, with a potential to support a vast set of applications that rely on mission-critical links. In this article, we first discuss the principles for supporting URLLC from the perspective of the traditional assumptions and models applied in communication/information theory. We then discuss how these principles are applied in various elements of the system design, such as use of various diversity sources, design of packets and access protocols. The important messages are that there is a need to optimize the transmission of signaling information, as well as a need for a lean use of various sources of diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy