SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bandaru Sashidar) "

Sökning: WFRF:(Bandaru Sashidar)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Bandaru, Sashidar (författare)
  • Filamin A in Cardiovascular Remodeling
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Filamin A (FLNA) is a large actin-binding cytoskeletal protein that stabilizes actin networks and integrates them with cell membranes. FLNA is therefore important for cell motility and organ development. We recently discovered that a C-terminal fragment of FLNA (FLNACT) can be cleaved off by calpain and stimulate angiogenesis by transporting transcription factors into the nucleus. However, little is known about the role of FLNA in cell types that participate in the pathogenesis of vascular diseases where angiogenesis typically plays an important role. In this thesis, we defined the impact of inactivating Flna in mouse vascular endothelial cells and macrophages on the pathogenesis of myocardial infarction (MI) and atherosclerosis, respectively—and made several exciting discoveries. In Study I, we induced MI by ligating the left descending coronary artery in wt control mice and mice lacking FLNA in endothelial cells. The Flna-knockout mice developed larger MI lesions than controls, and exhibited larger and thinner left ventricles, impaired cardiac function, elevated plasma levels of the cardiac damage biomarker NT-proBNP, and reduced plasma levels of the angiogenesis-promoting factor VEGF-A. Hearts from the Flna-knockout mice exhibited reduced capillary structures within infarcted regions; and cultured Flna-deficient endothelial cells showed impaired migration and tubular formation, along with reduced levels of the signaling molecules p-ERK and p-AKT and the small GTPase RAC1. In Study II, we first discovered that FLNA expression was higher in human carotid arteries with advanced atherosclerotic plaques than with intermediate plaques. We generated mice lacking FLNA in macrophages and found that their macrophages proliferated and migrated less compared with littermate controls. Moreover, Flna-deficient macrophages exhibited reduced levels of p-ERK and p-AKT, and reduced lipid uptake and increased cholesterol efflux. In two different mouse atherosclerosis models, the knockout of FLNA in macrophages markedly reduced lesion size and number of CD68-positive lesional macrophages. Interestingly, the calpain-cleaved FLNACT fragment interacted strongly with STAT3 in wt macrophages. Inhibiting FLNA cleavage with the calpain inhibitor calpeptin reduced nuclear p-STAT3 levels and subsequent IL-6 secretion in vitro; and reduced atherosclerotic lesions in vivo. We conclude that FLNA interacts with transcription factors and thereby regulates angiogenesis and inflammatory responses which are important events in the progression of MI and atherosclerosis. These findings identify FLNA as an important new mediator of cardiovascular remodeling and as a potential target for therapy.
  •  
4.
  • Bandaru, Sashidar, et al. (författare)
  • Filamin A increases aggressiveness of human neuroblastoma.
  • 2022
  • Ingår i: Neuro-oncology Advances. - : Oxford University Press (OUP). - 2632-2498. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The actin-binding protein filamin A (FLNA) regulates oncogenic signal transduction important for tumor growth, but the role of FLNA in the progression of neuroblastoma (NB) has not been explored.We analyzed FLNA mRNA expression in the R2 NB-database and FLNA protein expression in human NB tumors. We then silenced FLNA expression in human SKNBE2 and IMR32 NB cells by lentiviral vector encoding shRNA FLNA and assayed the cells for proliferation, migration, colony, spheroid formation, and apoptosis. SKNBE2 xenografts expressing or lacking FLNA in BALB/c nude mice were analyzed by both routine histopathology and immunohistochemistry.We observed shorter patient survival with higher expression of FLNA mRNA than patients with lower FLNA mRNA expression, and high-risk NB tumors expressed higher FLNA levels. Overexpression of FLNA increased proliferation of SH-SY5 NB cells. NB cell lines transfected with siRNA FLNA proliferated and migrated less, expressed lower levels of phosphorylated AKT and ERK1/2, formed smaller colonies and spheroids, as well as increased apoptosis. After inoculation of SKNBE2 cells infected with lentivirus expressing shRNA FLNA, size of NB tumors and number of proliferating cells were decreased. Furthermore, we identified STAT3 as an interacting partner of FLNA. Silencing FLNA mRNA reduced levels of NF-κB, STAT3 and MYCN, and increased levels of p53 and cleaved caspase 3.Inhibition of FLNA impaired NB cell signaling and function and reduced NB tumor size in vivo, suggesting that drugs targeting either FLNA or its interaction with STAT3 may be useful in the treatment of NB.
  •  
5.
  • Bandaru, Sashidar, et al. (författare)
  • Filamin A regulates cardiovascular remodeling
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:12
  • Forskningsöversikt (refereegranskat)abstract
    • Filamin A (FLNA) is a large actin‐binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C‐ terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in hu-mans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.
  •  
6.
  • Bandaru, Sashidar, et al. (författare)
  • Lack of RAC1 in macrophages protects against atherosclerosis.
  • 2020
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rho GTPase RAC1 is an important regulator of cytoskeletal dynamics, but the role of macrophage-specific RAC1 has not been explored during atherogenesis. We analyzed RAC1 expression in human carotid atherosclerotic plaques using immunofluorescence and found higher macrophage RAC1 expression in advanced plaques compared with intermediate human atherosclerotic plaques. We then produced mice with Rac1-deficient macrophages by breeding conditional floxed Rac1 mice (Rac1fl/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter (LC). Atherosclerosis was studied in vivo by infecting Rac1fl/fl and Rac1fl/fl/LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Rac1fl/fl/LC macrophages secreted lower levels of IL-6 and TNF-α and exhibited reduced foam cell formation and lipid uptake. The deficiency of Rac1 in macrophages reduced the size of aortic atherosclerotic plaques in AdPCSK9-infected Rac1fl/fl/LC mice. Compare with controls, intima/media ratios, the size of necrotic cores, and numbers of CD68-positive macrophages in atherosclerotic plaques were reduced in Rac1-deficient mice. Moreover, we found that RAC1 interacts with actin-binding filamin A. Macrophages expressed increased RAC1 levels in advanced human atherosclerosis. Genetic inactivation of RAC1 impaired macrophage function and reduced atherosclerosis in mice, suggesting that drugs targeting RAC1 may be useful in the treatment of atherosclerosis.
  •  
7.
  • Bandaru, Sashidar, et al. (författare)
  • Targeting filamin A reduces macrophage activity and atherosclerosis. : Filamin A in atherogenesis
  • 2019
  • Ingår i: Circulation. - 1524-4539. ; 140:1, s. 67-79
  • Tidskriftsartikel (refereegranskat)abstract
    • The actin-binding protein FLNA (filamin A) regulates signal transduction important for cell locomotion, but the role of macrophage-specific FLNA during atherogenesis has not been explored.We analyzed FLNA expression in human carotid atherosclerotic plaques by immunofluorescence. We also produced mice with Flna-deficient macrophages by breeding conditional Flna-knockout mice ( Flna o/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter ( LC). Atherosclerosis in vivo was studied by transplanting bone marrow from male Flna o/fl/ LC mice to atherogenic low-density lipoprotein receptor-deficient ( Ldlr-/-) mice; and by infecting Flna o/fl and Flna o/fl/ LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Furthermore, C57BL/6 mice were infected with AdPCSK9 and then treated with the calpain inhibitor calpeptin to inhibit FLNA cleavage.We found that macrophage FLNA expression was higher in advanced than in intermediate human atherosclerotic plaques. Flna o/fl/ LC macrophages proliferated and migrated less than controls; expressed lower levels of phosphorylated AKT and ERK1/2; exhibited reduced foam cell formation and lipid uptake; and excreted more lipids. The deficiency of Flna in macrophages markedly reduced the size of aortic atherosclerotic plaques in both Ldlr-/-BMT: Flnao/fl/LC and AdPCSK9-infected Flna o/fl/ LC mice. Intima/media ratios and numbers of CD68-positive macrophages in atherosclerotic plaques were lower in Flna-deficient mice than in control mice. Moreover, we found that STAT3 interacts with a calpain-cleaved carboxyl-terminal fragment of FLNA. Inhibiting calpain-mediated FLNA cleavage with calpeptin in macrophages reduced nuclear levels of phosphorylated STAT3, interleukin 6 secretion, foam cell formation, and lipid uptake. Finally, calpeptin treatment reduced the size of atherosclerotic plaques in C57BL/6 mice infected with AdPCSK9.Genetic inactivation of Flna and chemical inhibition of calpain-dependent cleavage of FLNA impaired macrophage signaling and function, and reduced atherosclerosis in mice, suggesting that drugs targeting FLNA may be useful in the treatment of atherosclerosis.
  •  
8.
  • Bandaru, Sashidar, et al. (författare)
  • Targeting filamin B induces tumor growth and metastasis via enhanced activity of matrix metalloproteinase-9 and secretion of VEGF-A : Role of filamin in tumor growth.
  • 2014
  • Ingår i: Oncogenesis. - : Springer Science and Business Media LLC. - 2157-9024. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Filamins regulate cell locomotion and associate with diverse signaling molecules. We have recently found that targeting filamin A (FLNA) reduces RAS-induced lung adenocarcinomas. In this study, we explored the role of another major filamin isoform, filamin B (FLNB), in tumor development. In contrast to FLNA, we report that targeting FLNB enhances RAS-induced tumor growth and metastasis which is associated with higher matrix metallopeptidase-9 (MMP-9) and extracellular signal-regulated kinase (ERK) activity. Flnb deficiency in mouse embryonic fibroblasts results in increased proteolytic activity of MMP-9 and cell invasion mediated by the RAS/ERK pathway. Similarly, silencing FLNB in multiple human cancer cells increases the proteolytic activity of MMP-9 and tumor cell invasion. Furthermore, we observed that Flnb-deficient RAS-induced tumors display more capillary structures that is correlated with increased vascular endothelial growth factor-A (VEGF-A) secretion. Inhibition of ERK activation blocks phorbol myristate acetate-induced MMP-9 activity and VEGF-A secretion in vitro. In addition, silencing FLNB in human ovarian cancer cells increases secretion of VEGF-A that induces endothelial cells to form more vascular structures in vitro. We conclude that FLNB suppresses tumor growth and metastasis by regulating the activity of MMP-9 and secretion of VEGF-A which is mediated by the RAS/ERK pathway.
  •  
9.
  • Chaudhari, Aditi, et al. (författare)
  • p110alpha hot spot mutations E545K and H1047R exert metabolic reprogramming independently of p110alpha kinase activity : Kinase-independent signaling of p110 alpha mutants
  • 2015
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 35:19, s. 3258-3273
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity.
  •  
10.
  • Davik, Petter, et al. (författare)
  • Can a peritoneal conduit become an artery?
  • 2020
  • Ingår i: EJVES Vascular Forum. - : Elsevier BV. - 2666-688X. ; 49, s. 23-29
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 The Authors Objective: Current vascular grafts all have limitations. This study examined peritoneum as a potential graft material and the in vivo transfer of peritoneum into a functional artery like conduit after end to end anastomosis into the common carotid artery of sheep. The aim was to investigate whether implantation of a peritoneal tube into the arterial tree results in a structure with function, histological findings, and gene expression like an artery, and whether such arterialisation occurs through a conversion of the phenotype of peritoneal cells or from host cell migration into the implant. Methods: Peritoneum with adherent rectus aponeurosis from sheep was used to form tubular vascular grafts that were implanted into the common carotid artery of six sheep, then removed after five months. Two sheep received allogenic peritoneal grafts and four sheep received autologous peritoneal grafts. Results: One sheep died shortly after implantation, so five of the six sheep were followed. Five months after implantation, four of the five remaining grafts were patent. Three of four patent grafts were aneurysmal. The four patent grafts had developed an endothelial layer indistinguishable from that of the adjacent normal artery, and a medial layer with smooth muscle cells with a surrounding adventitia. The new conduit displayed vasomotor function not present at the time of implantation. DNA genotyping showed that the media in the new conduit consisted of recipient smooth muscle cells. Little difference in mRNA expression was demonstrated between the post-implantation conduit and normal artery. Conclusion: During a five month implantation period in the arterial system, peritoneum converted into a tissue that histologically and functionally resembled a normal artery, with a functional genetic expression that resembled that of an artery. Single nucleotide polymorphism analysis indicated that this conversion occurs through host cell migration into the graft.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (13)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Bandaru, Sashidar (15)
Akyürek, Levent, 196 ... (14)
Borén, Jan, 1963 (4)
Kogner, Per (3)
Kanduri, Chandrasekh ... (3)
Bergö, Martin O., 19 ... (3)
visa fler...
Bergström, Göran, 19 ... (2)
Martinsson, Tommy, 1 ... (2)
Redfors, Björn (2)
Larsson, Erik, 1975 (2)
Akula, Murali K (2)
Bergö, Martin, 1970 (2)
Zhou, Xianghua, 1973 (2)
Kanduri, Meena, 1974 (2)
Subhash, Santhilal, ... (2)
Mondal, Tanmoy, 1981 (2)
Cao, Yihai (2)
Devarakonda, Sravani (2)
Ekstrand, Matias (2)
Juvvuna, Prasanna Ku ... (2)
Fischer, Matthias (2)
Zhang, Yan (1)
Carén, Helena, 1979 (1)
Kirkeby, Agnete (1)
Ejeskär, Katarina, 1 ... (1)
Abrahamsson, Jonas, ... (1)
Fransson, Susanne, 1 ... (1)
Lundqvist, Annika, 1 ... (1)
Omerovic, Elmir, 196 ... (1)
Skålen, Kristina, 19 ... (1)
Ibrahim, Mohamed X (1)
Sayin, Volkan I., 19 ... (1)
Ståhlman, Marcus, 19 ... (1)
Karlsson, Joakim (1)
Hallqvist, Andreas, ... (1)
Levin, Max, 1969 (1)
Kosalai, Subazini Th ... (1)
Mishra, Kankadeb, 19 ... (1)
Altreuther, Martin (1)
Östensson, Malin, 19 ... (1)
Rotter Sopasakis, Vi ... (1)
Fagman, Henrik, 1975 (1)
Wettergren, Yvonne, ... (1)
Pedrelli, Matteo (1)
Rouhi, Pegah (1)
Prajapati, Bharat (1)
Van den Eynden, Jimm ... (1)
Huarte, Maite (1)
Grönros, Julia (1)
Cil, Cağlar (1)
visa färre...
Lärosäte
Göteborgs universitet (15)
Karolinska Institutet (7)
Linköpings universitet (2)
Uppsala universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy