SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bandi S) "

Search: WFRF:(Bandi S)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Thomas, HS, et al. (author)
  • 2019
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Gautam, S., et al. (author)
  • Multigroup Multicast Precoding for Energy Optimization in SWIPT Systems With Heterogeneous Users
  • 2020
  • In: IEEE Open Journal of the Communications Society. - : Institute of Electrical and Electronics Engineers (IEEE). - 2644-125X. ; 1, s. 92-108
  • Journal article (peer-reviewed)abstract
    • The key to developing future generations of wireless communication systems lies in the expansion of extant methodologies, which ensures the coexistence of a variety of devices within a system. In this paper, we assume several multicasting (MC) groups comprising three types of heterogeneous users including Information Decoding (ID), Energy Harvesting (EH) and both ID and EH. We present a novel framework to investigate the multi-group (MG) - MC precoder designs for three different scenarios, namely, Separate Multicast and Energy Precoding Design (SMEP), Joint Multicast and Energy Precoding Design (JMEP), and Per-User Information and/or Energy Precoding Design (PIEP). In the considered system, a multi-antenna source transmits the relevant information and/or energy to the groups of corresponding receivers using more than one MC streams. The data processing users employ the conventional ID receiver architectures, the EH users make use of a non-linear EH module for energy acquisition, while the users capable of performing both ID and EH utilize the separated architecture with disparate ID and non-linear EH units. Our contribution is threefold. Firstly, we propose an optimization framework to i) minimize the total transmit power and ii) to maximize the sum harvested energy, the two key performance metrics of MG-MC systems. The proposed framework allows the analysis of the system under arbitrary given quality of service and harvested energy requirements. Secondly, to deal with the non-convexity of the formulated problems, we transform the original problems respectively into equivalent forms, which can be effectively solved by semi-definite relaxation (SDR) and alternating optimization. The convergence of the proposed algorithms is analytically guaranteed. Thirdly, a comparative study between the proposed schemes is conducted via extensive numerical results, wherein the benefits of adopting SMEP over JMEP and PIEP models are discussed.
  •  
7.
  •  
8.
  •  
9.
  • Korrai, P., et al. (author)
  • A RAN Resource Slicing Mechanism for Multiplexing of eMBB and URLLC Services in OFDMA Based 5G Wireless Networks
  • 2020
  • In: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 8, s. 45674-45688
  • Journal article (peer-reviewed)abstract
    • Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two services on the same wireless infrastructure leads to a challenging resource allocation problem due to their heterogeneous specifications. To address this problem, slicing has emerged as an architecture that enables a logical network with specific radio access functionality to each of the supported services on the same network infrastructure. The allocation of radio resources to each slice according to their requirements is a fundamental part of the network slicing that is usually executed at the radio access network (RAN). In this work, we formulate the RAN resource allocation problem as a sum-rate maximization problem subject to the orthogonality constraint (i.e., service isolation), latency-related constraint and minimum rate constraint while maintaining the reliability constraint with the incorporation of adaptive modulation and coding (AMC). However, the formulated problem is not mathematically tractable due to the presence of a step-wise function associated with the AMC and a binary assignment variable. Therefore, to solve the proposed optimization problem, first, we relax the mathematical intractability of AMC by using an approximation of the non-linear AMC achievable throughput, and next, the binary constraint is relaxed to a box constraint by using the penalized reformulation of the problem. The result of the above two-step procedure provides a close-to-optimal solution to the original optimization problem. Furthermore, to ease the complexity of the optimization-based scheduling algorithm, a low-complexity heuristic scheduling scheme is proposed for the efficient multiplexing of URLLC and eMBB services. Finally, the effectiveness of the proposed optimization and heuristic schemes is illustrated through extensive numerical simulations.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view