SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Banjop Kharlyngdoh Joubert 1982 ) "

Sökning: WFRF:(Banjop Kharlyngdoh Joubert 1982 )

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asnake, Solomon, 1985-, et al. (författare)
  • 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH)-mediated steroid hormone receptor activation and gene regulation in chicken LMH cells
  • 2014
  • Ingår i: Environmental Toxicology and Chemistry. - Hoboken : Wiley-Blackwell. - 0730-7268 .- 1552-8618. ; 33:4, s. 891-899
  • Tidskriftsartikel (refereegranskat)abstract
    • The incorporation of brominated flame retardants into industrial and household appliances has increased their occurrence in the environment, resulting in deleterious effects on wildlife. With the increasing restraints on available compounds, there has been a shift to using brominated flame retardants that has seen the production of alternative brominated flame retardants such as 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH), which has been detected in the environment. In previous in silico and in vitro studies the authors have shown that TBECH can activate both the human androgen receptor (hAR) and the zebrafish AR (zAR) suggesting that it is a potential endocrine disruptor. The present study was aimed at determining the interaction of TBECH with the chicken AR (cAR). In the present study, TBECH bound to cAR, but in vitro activation assay studies using the chicken LMH cell line showed it had a potency of only 15% compared with testosterone. Sequence difference between ARs from different species may contribute to the different responses to TBECH. Further quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) analysis showed that TBECH interacted with and altered the expression of both thyroid receptors and estrogen receptors. In addition, the qRT-PCR analysis showed that TBECH altered the transcription pattern of genes involved in inflammatory, apoptotic, proliferative, DNA methylation, and drug-metabolizing pathways. This demonstrates that TBECH, apart from activating cAR, can also influence multiple biological pathways in the chicken.
  •  
2.
  • Asnake, Solomon, 1985-, et al. (författare)
  • The brominated flame retardants TBP-AE and TBP-DBPE antagonize the chicken androgen receptor and act as potential endocrine disrupters in chicken LMH cells
  • 2015
  • Ingår i: Toxicology in Vitro. - : Elsevier. - 0887-2333 .- 1879-3177. ; 29:8, s. 1993-2000
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased exposure of birds to endocrine disrupting compounds has resulted in developmental and reproductive dysfunctions. We have recently identified the flame retardants, ally1-2,4,6-tribromophenyl ether (TBP-AE), 2-3-dibromopropy1-2,4,6-tribromophenyl ether (TBP-DBPE) and the TBP-DBPE metabolite 2-bromoallyI-2,4,6-tribromophenyl ether (TBP-BAE) as antagonists to both the human androgen receptor (AR) and the zebrafish AR. In the present study, we aimed at determining whether these compounds also interact with the chicken AR. In silico modeling studies showed that TBP-AE, TBP-BAE and TBP-DBPE were able to dock into to the chicken AR ligand-binding pocket. In vitro transfection assays revealed that all three brominated compounds acted as chicken AR antagonists, inhibiting testosterone induced AR activation. In addition, qRT-PCR studies confirmed that they act as AR antagonists and demonstrated that they also alter gene expression patterns of apoptotic, anti-apoptotic, drug metabolizing and amino acid transporter genes. These studies, using chicken LMH cells, suggest that TBP-AE, TBP-BAE and TBP-DBPE are potential endocrine disrupters in chicken.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Kharlyngdoh, Joubert Banjop, 1982-, et al. (författare)
  • Androgen receptor modulation following combination exposure to brominated flame-retardants
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Endocrine disrupting compounds can interfere with androgen receptor (AR) signaling and disrupt steroidogenesis leading to reproductive failure. The brominated flame-retardant (BFR) 1, 2-dibromo-4-(1, 2-dibromoethyl) cyclohexane (TBECH), is an agonist to human, chicken and zebrafish AR. Recently another group of alternative BFRs, allyl 2, 4, 6-tribromophenyl ether (ATE), and 2, 3-dibromopropyl 2, 4, 6-tribromophenyl ether (DPTE) along with its metabolite 2-bromoallyl 2, 4, 6-tribromophenyl ether (BATE) were identified as potent human AR antagonists. These alternative BFRs are present in the environment. The aim of the present study was to determine the effect of mixed exposures to the AR agonist and the AR antagonists at environmentally relevant concentrations. In vitro reporter luciferase assay showed that the AR antagonists, when present at concentration higher than TBECH, were able to inhibit TBECH-mediated AR activity. These AR antagonists also promoted AR nuclear translocation. In vitro gene expression analysis in the non-tumorigenic human prostate epithelial cell RWPE1 showed that TBECH induced AR target genes whereas DPTE repressed these genes. Further analysis of steroidogenic genes showed that TBECH up-regulated most of the genes while DPTE down-regulated the same genes. The results indicate that when TBECH and DPTE are present together they will antagonize each other, thereby reducing their individual effects.
  •  
8.
  • Kharlyngdoh, Joubert Banjop, 1982-, et al. (författare)
  • TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer
  • 2016
  • Ingår i: Toxicology and Applied Pharmacology. - : Elsevier. - 0041-008X .- 1096-0333. ; 307, s. 91-101
  • Tidskriftsartikel (refereegranskat)abstract
    • Point mutations in the AR ligand-binding domain (LBD) can result in altered AR structures leading to changes of ligand specificity and functions. AR mutations associated to prostate cancer (PCa) have been shown to result in receptor activation by non-androgenic substances and anti-androgenic drugs. Two AR mutations known to alter the function of anti-androgens are the ART877A mutation, which is frequently detected mutation in PCa tumors and the ARW741C that is rare and has been derived in vitro following exposure of cells to the anti-androgen bicalutamide. AR activation by non-androgenic environmental substances has been suggested to affect PCa progression. In the present study we investigated the effect of AR mutations (ARW741C and ART877A) on the transcriptional activation following exposure of cells to an androgenic brominated flame retardant, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH, also named DBE-DBCH). The AR mutations resulted in higher interaction energies and increased transcriptional activation in response to TBECH diastereomer exposures. The ART877A mutation rendered AR highly responsive to low levels of DHT and TBECH and led to increased AR nuclear translocation. Gene expression analysis showed a stronger induction of AR target genes in LNCaP cells (ART877A) compared to T-47D cells (ARWT) following TBECH exposure. Furthermore, AR knockdown experiments confirmed the AR dependency of these responses. The higher sensitivity of ART877A and ARW741C to low levels of TBECH suggests that cells with these AR mutations are more susceptible to androgenic endocrine disrupters.
  •  
9.
  •  
10.
  • Pradhan, Ajay, 1983-, et al. (författare)
  • In silico and biological analysis of anti-androgen activity of the brominated flame retardants ATE, BATE and DPTE in zebrafish
  • 2015
  • Ingår i: Chemico-Biological Interactions. - : Elsevier BV. - 0009-2797 .- 1872-7786. ; 233, s. 35-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The brominated flame retardants (BFRs) 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH or DBE-DCBH) and allyl 2,4,6-tribromophenyl ether (ATE or TBP-AE) are alternative BFRs that have been introduced to replace banned BFRs. TBECH is a potential endocrine disrupter in human, chicken and zebrafish and in a recent study we showed that ATE, along with the structurally similar BFR 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE or TBP-DBPE) and its metabolite 2-bromoallyl 2,4,6-tribromophenyl ether (BATE or TBP-BAE) are potential endocrine and neuronal disrupters in human. In this study we analyzed ATE, BATE and DPTE for zebrafish androgen receptor (zAR) modulating properties. In silico analysis with two softwares, Molecular Operating Environment (MOE) and Internal Coordinate Mechanics (ICM), showed that ATE, BATE and DPTE bind to zAR. In vitro AR activation assay revealed that these three BFRs down-regulate 11-ketotestosterone (KT) mediated zAR activation. Exposure to 10 mu M DPTE resulted in reduced hatching success and like TBECH, BATE and DPTE at 10 mu M also had teratogenic properties with 20% and 50% back-bone curvature respectively. Gene transcription analysis in zebrafish embryos as well as in juveniles showed down-regulation of the androgen receptor and androgen response genes, which further support that these BFRs are androgen antagonists and potential endocrine disrupting compounds. Genes involved in steroidogenesis were also down-regulated by these BFRs. In view of this, the impact of these BFRs on humans and wildlife needs further analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy