SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bannan T. J.) "

Sökning: WFRF:(Bannan T. J.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mehra, A., et al. (författare)
  • The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy
  • 2021
  • Ingår i: Faraday Discussions. - 1359-6640. ; 226, s. 382-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Cooking emissions account for a significant proportion of the organic aerosols emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system. In addition to the thickness-dependent kinetics, we show that significant fractions of unreacted proxy remain after extensive ozone exposure and that this effect scales approximately linearly with film thickness, suggesting that a late-stage inert reaction product may form and inhibit reaction progress - effectively building up an inert crust. We determine this by using a range of simultaneous analytical techniques; most notably Small-Angle X-ray Scattering (SAXS) has been used for the first time to measure the reaction kinetics of films of a wide range of thicknesses from ca. 0.59 to 73 mu m with films <10 mu m thick being of potential atmospheric relevance. These observations have implications for the evolution of particulate matter in the urban environment, potentially extending the atmospheric lifetimes of harmful aerosol components and affecting the local urban air quality and climate.
  •  
2.
  • Mehra, A., et al. (författare)
  • Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing
  • 2021
  • Ingår i: Faraday Discussions. - 1359-6640. ; 226, s. 382-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic aerosols, a major constituent of fine particulate mass in megacities, can be directly emitted or formed from secondary processing of biogenic and anthropogenic volatile organic compound emissions. The complexity of volatile organic compound emission sources, speciation and oxidation pathways leads to uncertainties in the key sources and chemistry leading to formation of organic aerosol in urban areas. Historically, online measurements of organic aerosol composition have been unable to resolve specific markers of volatile organic compound oxidation, while offline analysis of markers focus on a small proportion of organic aerosol and lack the time resolution to carry out detailed statistical analysis required to study the dynamic changes in aerosol sources and chemistry. Here we use data collected as part of the joint UK-China Air Pollution and Human Health (APHH-Beijing) collaboration during a field campaign in urban Beijing in the summer of 2017 alongside laboratory measurements of secondary organic aerosol from oxidation of key aromatic precursors (1,3,5-trimethyl benzene, 1,2,4-trimethyl benzene, propyl benzene, isopropyl benzene and 1-methyl naphthalene) to study the anthropogenic and biogenic contributions to organic aerosol. For the first time in Beijing, this study applies positive matrix factorisation to online measurements of organic aerosol composition from a time-of-flight iodide chemical ionisation mass spectrometer fitted with a filter inlet for gases and aerosols (FIGAERO-ToF-I-CIMS). This approach identifies the real-time variations in sources and oxidation processes influencing aerosol composition at a near-molecular level. We identify eight factors with distinct temporal variability, highlighting episodic differences in OA composition attributed to regional influences and in situ formation. These have average carbon numbers ranging from C-5-C-9 and can be associated with oxidation of anthropogenic aromatic hydrocarbons alongside biogenic emissions of isoprene, alpha -pinene and sesquiterpenes.
  •  
3.
  • Tsiligiannis, Epameinondas, et al. (författare)
  • A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidation of isoprene by nitrate radicals (NO3) or by hydroxyl radicals (OH) under high NOx conditions forms a substantial amount of organonitrates (ONs). ONs impact NOx concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula C4H7NO5 are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe. From chamber experiments we found that C4H7NO5 isomers contribute 5%-17% of all measured ONs formed during nighttime and constitute more than 40% of the measured ONs after further daytime oxidation. In ambient measurements C4H7NO5 isomers usually dominate both nighttime and daytime, implying a long residence time compared to C-5 ONs which are removed more rapidly. We propose potential nighttime sources and secondary formation pathways, and test them using a box model with an updated isoprene oxidation scheme.
  •  
4.
  • Anderson, D. C., et al. (författare)
  • Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAM-Chem and the CCMI Models
  • 2017
  • Ingår i: Journal of Geophysical Research-Atmospheres. - : American Geophysical Union (AGU). - 2169-897X. ; 122:20, s. 11201-11226
  • Tidskriftsartikel (refereegranskat)abstract
    • Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HOx. In remote marine environments, such as the tropical western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here we have used observations from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from similar to 500 parts per trillion by volume (pptv) near the surface to similar to 75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by similar to 33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NOx emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (similar to 15%) in the lower troposphere.
  •  
5.
  • Le Breton, Michael, 1986, et al. (författare)
  • Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl-VOC production
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:17, s. 13013-13030:18, s. 13013-13030
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitryl chloride (ClNO2) accumulation at night acts as a significant reservoir for active chlorine and impacts the following day's photochemistry when the chlorine atom is liberated at sunrise. Here, we report simultaneous measurements of N2O5 and a suite of inorganic halogens including ClNO2 and reactions of chloride with volatile organic compounds (Cl-VOCs) in the gas and particle phases utilising the Filter Inlet for Gas and AEROsols time-of-flight chemical ionisation mass spectrometer (FIGAERO-ToF-CIMS) during an intensive measurement campaign 40 km northwest of Beijing in May and June 2016. A maximum mixing ratio of 2900 ppt of ClNO2 was observed with a mean campaign nighttime mixing ratio of 487 ppt, appearing to have an anthropogenic source supported by correlation with SO2, CO and benzene, which often persisted at high levels after sunrise until midday. This was attributed to such high mixing ratios persisting after numerous e-folding times of the photolytic lifetime enabling the chlorine atom production to reach 2.3 x 10(5) molecules cm(-3) from ClNO2 alone, peaking at 09:30 LT and up to 8.4 x 10(5) molecules cm(-3) when including the supporting inorganic halogen measurements. Cl-VOCs were observed in the particle and gas phases for the first time at high time resolution and illustrate how the iodide ToF-CIMS can detect unique markers of chlorine atom chemistry in ambient air from both biogenic and anthropogenic sources. Their presence and abundance can be explained via time series of their measured and steady-state calculated precursors, enabling the assessment of competing OH and chlorine atom oxidation via measurements of products from both of these mechanisms and their relative contribution to secondary organic aerosol (SOA) formation.
  •  
6.
  • Le Breton, Michael, 1986, et al. (författare)
  • Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:14, s. 10355-10371
  • Tidskriftsartikel (refereegranskat)abstract
    • A time-of-flight chemical ionization mass spectrometer (CIMS) utilizing the Filter Inlet for Gas and Aerosol (FIGAERO) was deployed at a regional site 40 km north-west of Beijing and successfully identified and measured 17 sulfur-containing organics (SCOs are organo/nitrooxy organosulfates and sulfonates) with biogenic and anthropogenic precursors. The SCOs were quantified using laboratory-synthesized standards of lactic acid sulfate and nitrophenol organosulfate (NP OS). The variation in field observations was confirmed by comparison to offline measurement techniques (orbitrap and high-performance liquid chromatography, HPLC) using daily averages. The mean total (of the 17 identified by CIMS) SCO particle mass concentration was 210 +/- 110 ng m(-3) and had a maximum of 540 ng m(-3), although it contributed to only 2 +/- 1% of the organic aerosol (OA). The CIMS identified a persistent gas-phase presence of SCOs in the ambient air, which was further supported by separate vapour-pressure measurements of NP OS by a Knudsen Effusion Mass Spectrometer (KEMS). An increase in relative humidity (RH) promoted partitioning of SCO to the particle phase, whereas higher temperatures favoured higher gas-phase concentrations. Biogenic emissions contributed to only 19% of total SCOs measured in this study. Here, C10H16NSO7, a monoterpene-derived SCO, represented the highest fraction (10 %) followed by an isoprene-derived SCO. The anthropogenic SCOs with polycyclic aromatic hydrocarbon (PAH) and aromatic precursors dominated the SCO mass loading (51 %) with C11H11SO7, derived from methyl naphthalene oxidation, contributing to 40 ng m(-3) and 0.3% of the OA mass. Anthropogenic-related SCOs correlated well with benzene, although their abundance depended highly on the photochemical age of the air mass, tracked using the ratio between pinonic acid and its oxidation product, acting as a qualitative photochemical clock. In addition to typical anthropogenic and biogenic precursors the biomass-burning precursor nitrophenol (NP) provided a significant level of NP OS. It must be noted that the contribution analysis here is only representative of the detected SCOs. There are likely to be many more SCOs present which the CIMS has not identified. Gas- and particle-phase measurements of glycolic acid suggest that partitioning towards the particle phase promotes glycolic acid sulfate production, contrary to the current formation mechanism suggested in the literature. Furthermore, the HSO4 center dot H2SO4- cluster measured by the CIMS was utilized as a qualitative marker for acidity and indicates that the production of total SCOs is efficient in highly acidic aerosols with high SO42- and organic content. This dependency becomes more complex when observing individual SCOs due to variability of specific VOC precursors.
  •  
7.
  • Bannan, T. J., et al. (författare)
  • A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application
  • 2019
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 12:3, s. 1429-1439
  • Tidskriftsartikel (refereegranskat)abstract
    • The Filter Inlet for Gases and AEROsols (FIGAERO) is an inlet specifically designed to be coupled with the Aerodyne High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS). The FIGAERO-HR-ToF-CIMS provides simultaneous molecular information relating to both the gas- and particle-phase samples and has been used to extract vapour pressures (VPs) of the compounds desorbing from the filter whilst giving quantitative concentrations in the particle phase. However, such extraction of vapour pressures of the measured particle-phase components requires use of appropriate, well-defined, reference compounds. Vapour pressures for the homologous series of polyethylene glycols (PEG) ((H-(O-CH 2 CH 2 ) n -OH) for n = 3 to n = 8), covering a range of vapour pressures (VP) (10 -1 to 10 -7 Pa) that are atmospherically relevant, have been shown to be reproduced well by a range of different techniques, including Knudsen Effusion Mass Spectrometry (KEMS). This is the first homologous series of compounds for which a number of vapour pressure measurement techniques have been found to be in agreement, indicating the utility as a calibration standard, providing an ideal set of benchmark compounds for accurate characterization of the FIGAERO for extracting vapour pressure of measured compounds in chambers and the real atmosphere. To demonstrate this, single-component and mixture vapour pressure measurements are made using two FIGAERO-HR-ToF-CIMS instruments based on a new calibration determined from the PEG series. VP values extracted from both instruments agree well with those measured by KEMS and reported values from literature, validating this approach for extracting VP data from the FIGAERO. This method is then applied to chamber measurements, and the vapour pressures of known products are estimated. © 2019 Author(s).
  •  
8.
  •  
9.
  • Priestley, Michael, et al. (författare)
  • Chemical characterisation of benzene oxidation products under high- and low-NOx conditions using chemical ionisation mass spectrometry
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:5, s. 3473-3490
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic hydrocarbons are a class of volatile organic compounds associated with anthropogenic activity and make up a significant fraction of urban volatile organic compound (VOC) emissions that contribute to the formation of secondary organic aerosol (SOA). Benzene is one of the most abundant species emitted from vehicles, biomass burning and industry. An iodide time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) and nitrate ToF-CIMS were deployed at the Julich Plant Atmosphere Chamber as part of a series of experiments examining benzene oxidation by OH under high- and low-NOx conditions, where a range of organic oxidation products were detected. The nitrate scheme detects many oxidation products with high masses, ranging from intermediate volatile organic compounds (IVOCs) to extremely low volatile organic compounds (ELVOCs), including C-12 dimers. In comparison, very few species with C->= 6 and O-> 8 were detected with the iodide scheme, which detected many more IVOCs and semi-volatile organic compounds (SVOCs) but very few ELVOCs and low volatile organic compounds (LVOCs). A total of 132 and 195 CHO
  •  
10.
  • Bannan, T. J., et al. (författare)
  • A Large Source of Atomic Chlorine From ClNO2 Photolysis at a UK Landfill Site
  • 2019
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 46:14, s. 8508-8516
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitryl chloride (ClNO2) acts as a source of highly reactive chlorine atoms as well as an important NOx reservoir. Measurements of ClNO2 at an operational U.K. landfill site are reported here for the first time. A peak concentration of 4 ppb of ClNO2 was found with a peak mean nighttime maximum of 0.9 ppb. Using models based upon the photolysis of observed ClNO2 and atmospheric chlorine chemistry, chlorine atom concentrations reaching in excess of 1.20 x 10(5) molecules/cm(3) in the early morning following sunrise are calculated. These concentrations are approximately 10 times higher than previously reported in the United Kingdom, suggesting a significant impact on the oxidizing capacity around such sites. Given the ubiquity of landfill sites regionally and globally, and the large abundances of Cl atoms from the photolysis of ClNO2, chlorine chemistry has a significant impact on ozone formation and volatile organic compounds oxidation as shown by WRF-Chem modeling. Plain Language Summary Landfill sites are a known source of traces gases into the atmosphere, but measurements often focus predominately on methane and carbon dioxide. A small subsection of trace gas measurements at landfill sites have shown, however, that these sites may be important halogen sources that could have subsequent impacts on air quality and climate. Spatially limited field measurements have previously been reported of a halogen species, ClNO2, showing that this species is consistently formed during nighttime hours, but no such measurements before now have been made at any landfill site. ClNO2 undergoes photolysis upon sunrise, releasing the extremely reactive Cl as well as NO2 into the atmosphere and therefore plays an important part in the total budget and distribution of tropospheric oxidants, halogens, and reactive nitrogen species, all of which are important to air quality. Here we present mass spectrometry measurements of ClNO2 taken at an undisclosed landfill, which show high concentrations in comparison to any other global study of this type. We use predictive modeling techniques to show the importance of this halogen species to air quality, using indicators such as ozone formation. Based on these results we recommend that landfill sources of Cl should be included in future air quality studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy