SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bansal Sheel) "

Sökning: WFRF:(Bansal Sheel)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bansal, Sheel, et al. (författare)
  • Practical Guide to Measuring Wetland Carbon Pools and Fluxes
  • 2023
  • Ingår i: Wetlands (Wilmington, N.C.). - : SPRINGER. - 0277-5212 .- 1943-6246. ; 43:8
  • Forskningsöversikt (refereegranskat)abstract
    • Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.
  •  
3.
  • Bansal, Sheel, et al. (författare)
  • Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest
  • 2012
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 169, s. 661-672
  • Tidskriftsartikel (refereegranskat)abstract
    • In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, delta C-13 and delta N-15, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.
  •  
4.
  •  
5.
  • Bansal, Sheel, et al. (författare)
  • The interactive effects of surface-burn severity and canopy cover on conifer and broadleaf tree seedling ecophysiology
  • 2014
  • Ingår i: Canadian Journal of Forest Research. - : Canadian Science Publishing. - 0045-5067 .- 1208-6037. ; 44, s. 1032-1041
  • Tidskriftsartikel (refereegranskat)abstract
    • Fire has an important role for regeneration of many boreal forest tree species, and this includes both wildfire and prescribed burning following clear-cutting. Depending on the severity, fire can have a variety of effects on above-and below-ground properties that impact tree seedling establishment. Very little is known about the impacts of ground fire severity on post-fire seedling performance, or how the effects of fire severity interact with those of canopy structure. We conducted a full-factorial experiment that manipulated surface-burn severity (no burn; light, medium, or heavy burn; or scarification) and canopy (closed forest or open clear-cut) to reveal their interactive effects on ecophysiological traits of establishing broadleaf and conifer seedlings in a Swedish boreal forest. Medium and heavy surface burns increased seedling growth, photosynthesis, respiration, and foliar N and P concentrations, and these effects were most apparent in open clear-cuts. Growth rates of all species responded similarly to surface-burn treatments, although photosynthesis, foliar P, and specific leaf area were more responsive to burning treatments for broadleaf species than for conifers. Our study demonstrates that the positive impacts of fire on tree seedling physiology are dependent on a minimum severity threshold and are more effective when combined with clear-cutting.
  •  
6.
  • Chang, Kuang Yu, et al. (författare)
  • Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 2266-2266
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
  •  
7.
  •  
8.
  • Holgerson, Meredith A., et al. (författare)
  • Classifying Mixing Regimes in Ponds and Shallow Lakes
  • 2022
  • Ingår i: Water resources research. - : John Wiley & Sons. - 0043-1397 .- 1944-7973. ; 58:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes are classified by thermal mixing regimes, with shallow waterbodies historically categorized as continuously mixing systems. Yet, recent studies demonstrate extended summertime stratification in ponds, underscoring the need to reassess thermal classifications for shallow waterbodies. In this study, we examined the summertime thermal dynamics of 34 ponds and shallow lakes across temperate North America and Europe to categorize and identify the drivers of different mixing regimes. We identified three mixing regimes: rarely (n = 18), intermittently (n = 10), and often (n = 6) mixed, where waterbodies mixed an average of 2%, 26%, and 75% of the study period, respectively. Waterbodies in the often mixed category were larger (≥4.17 ha) and stratification weakened with increased wind shear stress, characteristic of “shallow lakes.” In contrast, smaller waterbodies, or “ponds,” mixed less frequently, and stratification strengthened with increased shortwave radiation. Shallow ponds (<0.74 m) mixed intermittently, with daytime stratification often breaking down overnight due to convective cooling. Ponds ≥0.74 m deep were rarely or never mixed, likely due to limited wind energy relative to the larger density gradients associated with slightly deeper water columns. Precipitation events weakened stratification, even causing short-term mixing (hours to days) in some sites. By examining a broad set of shallow waterbodies, we show that mixing regimes are highly sensitive to very small differences in size and depth, with potential implications for ecological and biogeochemical processes. Ultimately, we propose a new framework to characterize the variable mixing regimes of ponds and shallow lakes.
  •  
9.
  • Jonsson, Micael, et al. (författare)
  • Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient
  • 2015
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 18:1, s. 154-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Relative to vascular plants, little is known about what factors control bryophyte communities or how they respond to successional and environmental changes. Bryophytes are abundant in boreal forests, thus changes in moss community composition and functional traits (for example, moisture and nutrient content; rates of photosynthesis and respiration) may have important consequences for ecosystem processes and microfaunal communities. Through synthesis of previous work and new analyses integrating new and published data from a long-term successional gradient in the boreal forest of northern Sweden, we provide a comprehensive view of the biotic factors (for example, vascular plant productivity, species composition, and diversity) and abiotic factors (for example, soil fertility and light transmission) that impact the moss community. Our results show that different aspects of the moss community (that is, composition, functional traits, moss-driven processes, and associated invertebrate fauna) respond to different sets of environmental variables, and that these are not always the same variables as those that influence the vascular plant community. Measures of moss community composition and functional traits were primarily influenced by vascular plant community composition and productivity. This suggests that successional shifts in abiotic variables, such as soil nutrient levels, indirectly affect the moss community via their influence on vascular plant community characteristics, whereas direct abiotic effects are less important. Among the moss-driven processes, moss litter decomposition and moss productivity were mainly influenced by biotic variables (notably the community characteristics of both vascular plants and mosses), whereas moss functional traits (primarily specific leaf area and tissue nutrient concentrations) also were important in explaining moss di-nitrogen-fixation rates. In contrast, both abiotic and biotic variables were important drivers of moss microfaunal community structure. Taken together, our results show which abiotic and biotic factors impact mosses and their associated organisms, and thus highlight that multiple interacting factors need to be considered to understand how moss communities, associated food webs, and the ecosystem processes they influence will respond to environmental change.
  •  
10.
  • Ray, Nicholas E. E., et al. (författare)
  • Spatial and temporal variability in summertime dissolved carbon dioxide and methane in temperate ponds and shallow lakes
  • 2023
  • Ingår i: Limnology and Oceanography. - : American Society of Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 68:7, s. 1530-1545
  • Tidskriftsartikel (refereegranskat)abstract
    • Small waterbodies have potentially high greenhouse gas emissions relative to their small footprint on the landscape, although there is high uncertainty in model estimates. Scaling their carbon dioxide (CO2) and methane (CH4) exchange with the atmosphere remains challenging due to an incomplete understanding and characterization of spatial and temporal variability in CO2 and CH4. Here, we measured partial pressures of CO2 (pCO2) and CH4 (pCH4) across 30 ponds and shallow lakes during summer in temperate regions of Europe and North America. We sampled each waterbody in three locations at three times during the growing season, and tested which physical, chemical, and biological characteristics related to the means and variability of pCO2 and pCH4 in space and time. Summer means of pCO2 and pCH4 were inversely related to waterbody size and positively related to floating vegetative cover; pCO2 was also positively related to dissolved phosphorus. Temporal variability in partial pressure in both gases weas greater than spatial variability. Although sampling on a single date was likely to misestimate mean seasonal pCO2 by up to 26%, mean seasonal pCH4 could be misestimated by up to 64.5%. Shallower systems displayed the most temporal variability in pCH4 and waterbodies with more vegetation cover had lower temporal variability. Inland waters remain one of the most uncertain components of the global carbon budget; understanding spatial and temporal variability will ultimately help us to constrain our estimates and inform research priorities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (11)
annan publikation (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Bansal, Sheel (13)
Wardle, David (5)
Nilsson Hegethorn, M ... (5)
Gundale, Michael (3)
Weyhenmeyer, Gesa A. (2)
Jackson, Robert B. (2)
visa fler...
Poulter, Benjamin (2)
Zhang, Zhen (2)
Mesman, Jorrit P., 1 ... (2)
Jochum, Till (2)
Desai, Ankur R. (2)
Krauss, Ken W. (2)
Baldocchi, Dennis (2)
Wickland, Kimberly P ... (1)
Finlay, Jacques C. (1)
Peng, Changhui (1)
Peichl, Matthias (1)
Ottosson Löfvenius, ... (1)
Metcalfe, Dan (1)
DelSontro, Tonya (1)
Torn, Margaret S. (1)
Papale, Dario (1)
Rusak, James A. (1)
Bastviken, David (1)
Futter, Martyn (1)
Zhang, Wenxin (1)
Miller, Paul A. (1)
Sharma, Sapna (1)
Creed, Irena F. (1)
Berg, Peter (1)
Sachs, Torsten (1)
Grossart, Hans-Peter (1)
Kardol, Paul (1)
Arias-Ortiz, Ariane (1)
Kokorite, Ilga (1)
Peacock, Michael (1)
Wallin, Marcus (1)
Tangen, Brian A. (1)
Bridgham, Scott D. (1)
Neubauer, Scott C. (1)
Noe, Gregory B. (1)
Rosenberry, Donald O ... (1)
Trettin, Carl (1)
Allen, Scott T. (1)
Armitage, Anna R. (1)
Banerjee, Kakoli (1)
Bogard, Matthew J. (1)
Chow, Alex T. (1)
Conner, William H. (1)
Craft, Christopher (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (10)
Uppsala universitet (4)
Lunds universitet (3)
Umeå universitet (2)
Göteborgs universitet (1)
Linköpings universitet (1)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Lantbruksvetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy