SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bao Qinye) "

Sökning: WFRF:(Bao Qinye)

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Admassie, Shimelis, et al. (författare)
  • A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage
  • 2014
  • Ingår i: JOURNAL OF MATERIALS CHEMISTRY A. - : Royal Society of Chemistry. - 2050-7488. ; 2:6, s. 1974-1979
  • Tidskriftsartikel (refereegranskat)abstract
    • A ternary composite supercapacitor electrode consisting of phosphomolybdic acid (HMA), a renewable biopolymer, lignin, and polypyrrole was synthesized by a simple one-step simultaneous electrochemical deposition and characterized by electrochemical methods. It was found that the addition of HMA increased the specific capacitance of the polypyrrole-lignin composite from 477 to 682 F g(-1) ( at a discharge current of 1 A g(-1)) and also significantly improved the charge storage capacity from 6(to 128 mA h g(-1).
  •  
2.
  • Bao, Qinye, et al. (författare)
  • Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488. ; 2:41, s. 17676-17682
  • Tidskriftsartikel (refereegranskat)abstract
    • We systematically show the effect of UV-light soaking on surface electronic structures and chemical states of solution processed ZnO nanoparticle (ZnONP) films in UHV, dry air and UV-ozone. UV exposure in UHV induces a slight decrease in work function and surface-desorption of chemisorbed oxygen, whereas UV exposure in the presence of oxygen causes an increase in work function due to oxygen atom vacancy filling in the ZnO matrix. We demonstrate that UV-light soaking in combination with vacuum or oxygen can tune the work function of the ZnONP films over a range exceeding 1 eV. Based on photovoltaic performance and diode measurements, we conclude that the oxygen atom vacancy filling occurs mainly at the surface of the ZnONP films and that the films consequently retain their n-type behavior despite a significant increase in the measured work function.
  •  
3.
  •  
4.
  • Bao, Qinye, et al. (författare)
  • Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 9:40, s. 35476-35482
  • Tidskriftsartikel (refereegranskat)abstract
    • Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of pi-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.
  •  
5.
  • Bao, Qinye, et al. (författare)
  • Energy Level Bending in Ultrathin Polymer Layers Obtained through Langmuir-Shafer Deposition
  • 2016
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 26:7, s. 1077-1084
  • Tidskriftsartikel (refereegranskat)abstract
    • The semiconductor-electrode interface impacts the function and the performance of (opto) electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution-processed organic ultrathin films on electrodes typically form islands due to dewetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer-electrode interface impossible. Also, this has hampered the development of devices including ultrathin conjugated polymer layers. Here, LangmuirShafer-manufactured homogenous mono-and multilayers of semiconducting polymers on metal electrodes are reported and the energy level bending using photoelectron spectroscopy is tracked. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. These findings provide new insights of the energetics of the polymer-electrode interface and opens up for new high-performing devices based on ultrathin semiconducting polymers.
  •  
6.
  • Bao, Qinye, 1985- (författare)
  • Interface Phenomena in Organic Electronics
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organic electronics based on organic semiconductors offer tremendous advantages compared to traditional inorganic counterparts such as low temperature processing, light weight, low manufacturing cost, high throughput and mechanical flexibility. Many key electronic processes in organic electronic devices, e.g. charge injection/extraction, charge recombination and exciton dissociation, occur at interfaces, significantly controlling performance and function. Understanding/modeling the interface energetics at organic-electrode/organic-organic heterojunctions is one of the crucial issues for organic electronic technologies to provide a route for improving device efficiency, which is the aim of the research presented in this thesis.Integer charge transfer (ICT) states pre-existed in the dark and created as a consequence of Fermi level equilibrium at donor-acceptor interface have a profound effect on open circuit voltage in organic bulk heterojunction photovoltaics. ICT state formation causes vacuum level misalignment that yields a roughly constant effective donor ionization potential to acceptor electron affinity energy difference at the donor-acceptor interface, even though there is a large variation in electron affinity for the fullerene series. The large variation in open circuit voltage for the corresponding device series instead is found to be a consequence of trap-assisted recombination via integer charge transfer states. Based on the results, novel design rules for optimizing open circuit voltage and performance of organic bulk heterojunction solar cells are proposed.Doping and insertion of interlayer are two established methods for enhancing charge injection/extraction properties at organic-electrode interface. By studying the energy level alignment behavior at low to intermediate doping levels for molecule-doped conjugated polymer/electrode interfaces, we deduce that two combined processes govern the interface energetics: (i) equilibration of the Fermi level due to oxidation (or reduction) of polymer sites at the interface as per the ICT model and (ii) a double dipole step induced by image charge from the dopant-polymer charge transfer complex that causes a shift of the work function. Such behavior is expected to hold in general for low to intermediate level doped organic semiconductor systems. The unified model is further extended to be suitable for conjugated electrolyte/electrode  interfaces, revealing the design rules for achieving the smallest charge injection/extraction barrier for both thin tunneling and thick charge transporting conjugated electrolyte interlayers.To probe into the energy level spatial extension at interfaces, we employ the original approach of building and characterizing multilayers composed of a well-defined number of polymer monolayers with the Langmuir-Shäfer method to control polymer film uniformity and thicknesses, avoiding the problems associated with spin-coating ultrathin films. The disordered/amorphous films feature smaller, and in fact negligible, energy level bending compared to the more well-ordered films, in contradiction with existing models. It is found that that energy level bending depends on the ICT state distribution rather than the density of states of the neutral polymer chains in relation to the Fermi energy, thus taking into account the Coulomb energy associated with charging the polymer chain and transferring a charge across the interface. Based on this work, a general model for energy level bending in absence of significant doping of conjugated polymer films is proposed.Organic semiconductors are sensitive to ambient atmosphere that can influence the energetics. The degradation effects of common PCBM film induced by oxygen and water are found to be completely different. Upon exposure to oxygen, the work function is down-shifted by ~ 0.15 eV compared to the ICT curve of the pristine PCBM film, originating from the weak interaction between the fullerene part of PCBM and oxygen, and this can be reversed by thermal treatment in vacuum. The down-shift in energetics will cause a loss in open circuit voltage at electrode interface, but aids free charge generation at donor-acceptor interface. Upon exposure to water, there is irreversible extensive broadening and bleaching of the valence electronic structure features as well as a substantial decrease of work function and ionization potential, severely degrading the transport properties.Overall, the research results in this thesis thus give a deeper understanding of interface phenomena in organic electronics, especially regard to organic solar cells, aimed to further improve the device operation efficiency and lifetime.
  •  
7.
  • Bao, Qinye, et al. (författare)
  • Interfaces of (Ultra)thin Polymer Films in Organic Electronics
  • 2019
  • Ingår i: Advanced Materials Interfaces. - : WILEY. - 2196-7350. ; 6:1
  • Forskningsöversikt (refereegranskat)abstract
    • In this short review the energy level alignment of interfaces involving solution-processed conjugated polymer (and soluble small molecules) films is described. Some general material properties of conjugated polymers and their solution-processed films are introduced, and the basic physics involved in energy level alignment at their interfaces is then discussed. An overview of energy level bending in (ultra)thin conjugated polymer films (often referred to as "band bending") is given and the effects of ion-containing interlayers typically used in organic electronic devices such as polymer light emitting diodes and organic bulk heterojunction solar cells are explored. The review finishes by describing a few of the available computational models useful for predicting and/or modeling energy level alignment at interfaces of solution-processed polymer films and discusses their respective strengths and weaknesses.
  •  
8.
  • Bao, Qinye, et al. (författare)
  • Oxygen- and Water-Based Degradation in [6,6]-Phenyl-C-61-Butyric Acid Methyl Ester (PCBM) Films
  • 2014
  • Ingår i: Advanced Energy Materials. - : Wiley-VCH Verlag. - 1614-6832 .- 1614-6840. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of in situ oxygen/water exposure on the energetics of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) films are presented. For oxygen exposure, the work function is downshifted by ≈0.15 eV compared to the ideal integer charge transfer (ICT) curve for pristine PCBM, which is incompatible with significant introduction of electron trap states or p-doping. Water induces the highest occupied molecular orbital (HOMO) structure to undergo strong, irreversible modifications accompanied by a chemical interaction with PCBM.
  •  
9.
  • Bao, Qinye, et al. (författare)
  • Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and Their Implications of Design Rules
  • 2015
  • Ingår i: Advanced Materials Interfaces. - : John Wiley & Sons. - 2196-7350. ; 2:12, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Regular energetics at a conjugated electrolyte/electrode modifier are found and controlled by equilibration of the Fermi level and an additional interface double dipole step induced by ionic functionality. Based on the results, design rules for conjugated electrolyte/electrode modifiers to achieve the smallest charge injection/exaction barrier and break through the current thickness limitation are proposed.
  •  
10.
  • Bao, Qinye, et al. (författare)
  • The Effect of Oxygen Uptake on Charge Injection Barriers in Conjugated Polymer Films
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 10:7, s. 6491-6497
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy offset between the electrode Fermi level and organic semiconductor transport levels is a key parameter controlling the charge injection barrier and hence efficiency of organic electronic devices. Here, we systematically explore the effect of in situ oxygen exposure on energetics in n-type conjugated polymer P(NDI2OD-T2) films. The analysis reveals that an interfacial potential step is introduced for a series of P(NDI2OD-T2) electrode contacts, causing a nearly constant downshift of the vacuum level, while the ionization energies versus vacuum level remain constant. These findings are attributed to the establishment of a so-called double-dipole step via motion of charged molecules and will modify the charge injection barriers at electrode contact. We further demonstrate that the same behavior occurs when oxygen interacts with p-type polymer TQ1 films, indicating it is possible to be a universal effect for organic semiconductOrs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy