SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bao Zhenan) "

Sökning: WFRF:(Bao Zhenan)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Gan, et al. (författare)
  • Effects of Transition Metals on Metal–Octaaminophthalocyanine-Based 2D Metal–Organic Frameworks
  • 2023
  • Ingår i: ACS Nano. - 1936-0851 .- 1936-086X. ; 17:10, s. 9611-9621
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal–octaaminophthalocyanine (MOAPc)-based 2D conductive metal–organic frameworks (cMOFs) have shown great potential in several applications, including sensing, energy storage, and electrocatalysis, due to their bimetallic characteristics. Here, we report a detailed metal substitution study on a family of isostructural cMOFs with Co2+, Ni2+, and Cu2+ as both the metal nodes and the metal centers in the MOAPc ligands. We observed that different metal nodes had variations in the reaction kinetics, particle sizes, and crystallinities. Importantly, the electronic structure and conductivity were found to be dependent on both types of metal sites in the 2D cMOFs. Ni-NiOAPc was found to be the most conductive one among the nine possible combinations with a conductivity of 54 ± 4.8 mS/cm. DFT calculations revealed that monolayer Ni-NiOAPc has neither the smallest bandgap nor the highest charge carrier mobility. Hence its highest conductivity stems from its high crystallinity. Collectively, these results provide structure property relationships for MOAPc-based cMOFs with amino coordination units. 
  •  
2.
  • Chen, Gan, et al. (författare)
  • Valence-Dependent Electrical Conductivity in a 3D Tetrahydroxyquinone-Based Metal-Organic Framework
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 142:51, s. 21243-21248
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrically conductive metal-organic frameworks (cMOFs) have become a topic of intense interest in recent years because of their great potential in electrochemical energy storage, electrocatalysis, and sensing applications. Most of the cMOFs reported hitherto are 2D structures, and 3D cMOFs remain rare. Herein we report FeTHQ a 3D cMOF synthesized from tetrahydroxy-1,4-quinone (THQ) and iron(II) sulfate salt. FeTHQexhibited a conductivity of 3.3 +/- 0.55 mS cm(-1) at 300 K, which is high for 3D cMOFs. The conductivity of FeTHQis valence-dependent. A higher conductivity was measured with the as-prepared FeTHQ than with the air-oxidized and sodium naphthalenide-reduced samples.
  •  
3.
  • Feng, Dawei, et al. (författare)
  • Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance
  • 2018
  • Ingår i: Nature Energy. - : Springer Science and Business Media LLC. - 2058-7546. ; 3:1, s. 30-36
  • Tidskriftsartikel (refereegranskat)abstract
    • For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm(-3) and high areal capacitances over 20 F cm(-2). Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.
  •  
4.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
5.
  • Park, Jihye, et al. (författare)
  • High Thermopower in a Zn-Based 3D Semiconductive Metal-Organic Framework
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 142:49, s. 20531-20535
  • Tidskriftsartikel (refereegranskat)abstract
    • Conductive metal-organic frameworks (c-MOFs) have drawn increasing attention for their outstanding performance in energy-related applications. However, the majority of reported c-MOFs are based on 2D structures. Synthetic strategies for 3D c-MOFs are under-explored, leaving unrealized functionality in both their structures and properties. Herein we report Zn-HAB, a 3D c-MOF comprised of hexaaminobenzene and Zn(II). Zn-HAB is shown to have microporosity with a band gap of approximately 1.68 eV, resulting in a moderate conductivity of 0.86 mS cm(-1) and a high Seebeck coefficient of 200 mu V K-1 at 300 K. The power factor of 3.44 nW m(-1) K-2 constitutes the first report of the thermoelectric properties of an intrinsically conductive 3D MOF.
  •  
6.
  • Park, Jihye, et al. (författare)
  • Stabilization of Hexaaminobenzene in a 2D Conductive Metal-Organic Framework for High Power Sodium Storage
  • 2018
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 140:32, s. 10315-10323
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox-active organic materials have gained growing attention as electrodes of rechargeable batteries. However, their key limitations are the low electronic conductivity and limited chemical and structural stability under redox conditions. Herein, we report a new cobalt-based ;2D conductive metal-organic framework (MOF), Co-HAB, having stable, accessible, dense active sites for high-power energy storage device through conjugative coordination between a redox-active linker, hexaaminobenzene (HAB), and a Co(II) center. Given the exceptional capability of Co-HAB for stabilizing reactive HAB, a reversible three-electron redox reaction per HAB was successfully demonstrated for the first time, thereby presenting a promising new electrode material for sodium-ion storage. Specifically, through synthetic tunability of Co-HAB, the bulk electrical conductivity of 1.57 S cm(-1) was achieved, enabling an extremely high rate capability, delivering 214 mAh g(-1) within 7 min or 152 mAh g(-1) in 45 s. Meanwhile, an almost linear increase of the areal capacity upon increasing active mass loading up to 9.6 mg cm(-2) was obtained, demonstrating 2.6 mAh cm(-2) with a trace amount of conducting agent.
  •  
7.
  • Park, Jihye, et al. (författare)
  • Synthetic Routes for a 2D Semiconductive Copper Hexahydroxybenzene Metal-Organic Framework
  • 2018
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 140:44, s. 14533-14537
  • Tidskriftsartikel (refereegranskat)abstract
    • Conductive metal-organic frameworks (c-MOFs) have shown outstanding performance in energy storage and electrocatalysis. Varying the bridging metal species and the coordinating atom are versatile approaches to tune their intrinsic electronic properties in c-MOFs. Herein we report the first synthesis of the oxygen analog of M-3(C6X6)(2) (X = NH, S) family using Cu(II) and hexahydroxybenzene (HHB), namely Cu-HHB [Cu-3(C6O6)(2)], through a kinetically controlled approach with a competing coordination reagent. We also successfully demonstrate an economical synthetic approach using tetrahydroxyquinone as the starting material. Cu-HHB was found to have a partially eclipsed packing between adjacent 2D layers and a bandgap of approximately 1 eV. The addition of Cu-HHB to the family of synthetically realized M-3(C6X6)(2) c-MOFs will enable greater understanding of the influence of the organic linkers and metals, and further broadens the range of applications for these materials.
  •  
8.
  • Park, Jihye, et al. (författare)
  • Two-Dimensional Conductive Ni-HAB as a Catalyst for the Electrochemical Oxygen Reduction Reaction
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:35, s. 39074-39081
  • Tidskriftsartikel (refereegranskat)abstract
    • Catalytic systems whose properties can be systematically tuned via changes in synthesis conditions are highly desirable for the next-generation catalyst design and optimization. Herein, we present a two-dimensional (2D) conductive metal-organic framework consisting of M-N-4 units (M = Ni, Cu) and a hexaaminobenzene (HAB) linker as a catalyst for the oxygen reduction reaction. By varying synthetic conditions, we prepared two Ni-HAB catalysts with different crystallinities, resulting in catalytic systems with different electric conductivities, electrochemical activity, and stability. We show that crystallinity has a positive impact on conductivity and demonstrate that this improved crystallinity/conductivity improves the catalytic performance of our model system. Additionally, density functional theory simulations were performed to probe the origin of M-HAB's catalytic activity, and they suggest that M-HAB's organic linker acts as the active site with the role of the metal being to modulate the linker sites' binding strength.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy