SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barbu Andreea R.) "

Sökning: WFRF:(Barbu Andreea R.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barbu, Andreea R., et al. (författare)
  • A perfusion protocol for highly efficient transduction of intact pancreatic islets of Langerhans
  • 2006
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 49:10, s. 2388-2391
  • Tidskriftsartikel (refereegranskat)abstract
    • Successful gene transfer to pancreatic islets might be a powerful tool for dissecting the biological pathways involved in the functional impairment and destruction of beta cells in type 1 diabetes. In the long run, such an approach may also prove useful for promoting islet graft survival after transplantation in diabetic patients. However, efficient genetic modification of primary insulin-producing cells is limited by the specific compact structure of the pancreatic islet. We present here a whole-pancreas perfusion-based transduction procedure for genetic modification of intact pancreatic islets. We used flow cytometry analysis and confocal microscopy to evaluate the efficiency of in vitro and perfusion-based transduction protocols that use adenoviral and lentiviral vectors expressing green fluorescent protein. Islet cell viability was assessed by fluorescence microscopy and beta cell function was determined via glucose-stimulated insulin secretion. In intact rat and human pancreatic islets, adenoviral and lentiviral vectors mediated gene transfer to about 30% of cells, but they did not reach the inner cellular mass within the islet core. Using the whole-pancreas perfusion protocol, we demonstrate that at least in rodent models the centrally located insulin-producing cells can be transduced with high efficiency, while preserving the structural integrity of the islet. Moreover, islet cell viability and function are not impaired by this procedure. These results support the view that perfusion-based transduction protocols may significantly improve the yield of successfully engineered primary insulin-producing cells for diabetes research.
  •  
2.
  • Barbu, Andreea R, et al. (författare)
  • Adenoviral-induced islet cell cytotoxicity is not counteracted by Bcl-2 overexpression
  • 2002
  • Ingår i: Molecular Medicine. - 1076-1551 .- 1528-3658. ; 8:11, s. 733-741
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The ability to transfer immunoregulatory, cytoprotective, or anti-apoptotic genes into pancreatic islet cells may allow enhanced resistance against the autoimmune destruction of these cells in type 1 diabetes. We describe here an inducible transduction system for expression of the anti-apoptotic bcl-2 gene in insulin-producing cells as a potential tool for protecting against beta-cell death.MATERIALS AND METHODS: Isolated pancreatic rat islet cells or rat insulinoma (RINm5F) cells were transduced using a progesterone antagonist (RU 486) inducible adenoviral vector system, expressing the bcl-2 gene. Bcl-2 overexpression was measured by Western blot assays and flow cytometry analysis. Following exposure to cytokines or to the mitochondrial uncoupler FCCP, cell survival was determined using fluorescence and electron microscopy, and a colorimetric assay (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]- 2H-tetrazolium-5-carboxanilide [XTT]-based) for cell viability. The mitochondrial membrane potential ((m)) was assessed using the lipophilic cationic membrane potential-sensitive dye JC-1.RESULTS: The adenoviral gene transfer system induced Bcl-2 expression in more than 70% of beta-cells and the protein expression levels were successfully regulated in response to varying concentrations of progesterone antagonist RU 486. Exposure of islet cells to proinflammatory cytokines IL-1beta, TNF-alpha, and IFN-gamma, or to the mitochondrial uncoupler FCCP resulted in disruption of the mitochondrial membrane potential ((m)) and beta-cell death. Bcl-2 overexpression stabilized (m) and prevented cell death in RINm5F cells but not in islet cells. In addition, prolonged in vitro culture revealed adenoviral-induced islet cell necrosis.CONCLUSIONS: The RU 486-regulated adenoviral system can achieve an efficient control of gene transfer at relatively low doses of the adenoviral vector. However, Bcl-2 overexpression in islet cells did not prevent adenoviral- or cytokine-induced toxicity, suggesting that the specific death pathway involved in adenoviral toxicity in beta-cells may bypass the mitochondrial permeability transition event.
  •  
3.
  • Barbu, Andreea R, et al. (författare)
  • Adenoviral-mediated transduction of human pancreatic islets : importance of adenoviral genome for cell viability and association with a deficient antiviral response
  • 2005
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 146:5, s. 2406-2414
  • Tidskriftsartikel (refereegranskat)abstract
    • As adenoviral vectors are extensively used for genetic manipulation of insulin-producing cells in vitro, there is an increasing need to evaluate their effects on the function, morphology, and viability of transduced pancreatic islets. In the present study we observed that specific adenoviral genotypes, carrying E4 and E1/E3 deletions, correlate with differential induction of necrosis in pancreatic islet cells. In particular, the adenovirus death protein encoded from the E3 region of the adenoviral genome was able to modulate the changes induced in the morphology and viability of the transduced cells. We also propose a putative role for the transcriptional regulator pIX. Although human islet cells showed an increased resistance in terms of viral concentrations required for the induction of cell toxicity, our results showed that they were unable to build up an efficient antiviral response after transduction and that their survival was dependent on the exogenous addition of alpha-interferon. An intact and fully functional beta-cell is crucial for the successful application of gene therapy approaches in type 1 diabetes, and therefore, the implications of our findings need to be considered when designing vectors for gene transfer into pancreatic beta-cells.
  •  
4.
  •  
5.
  • Gustafson, Elisabet K., et al. (författare)
  • Exposure of von Willebrand Factor on Isolated Hepatocytes Promotes Tethering of Platelets to the Cell Surface
  • 2019
  • Ingår i: Transplantation. - : Wolters Kluwer. - 0041-1337 .- 1534-6080. ; 103:8, s. 1630-1638
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Hepatocyte transplantation (Hctx) is a potentially attractive method for the treatment of acute liver failure and liver-based metabolic disorders. Unfortunately, the procedure is hampered by the instant blood-mediated inflammatory reaction (IBMIR), a thromboinflammatory response elicited by the vascular innate immune system, causing activation of the coagulation and complement systems and clearance of transplanted cells. Observations have also revealed platelets adhered to the surface of the hepatocytes (Hc). To establish Hctx as a clinical treatment, all factors that trigger IBMIR need to be identified and controlled. This work explores the expression of von Willebrand factor (VWF) on isolated Hc resulting in tethering of platelets. Methods. VWF on Hc was studied by flow cytometry, confocal microscopy, immunoblot, and real-time polymerase chain reaction. Interaction between Hc and platelets was studied in a Chandler loop model. Adhesion of platelets to the hepatocyte surface was demonstrated by flow cytometry and confocal microscopy. Results. Isolated Hc constitutively express VWF on their cell surface and mRNA for VWF was found in the cells. Hc and platelets, independently of coagulation formed complexes, were shown by antibody blocking studies to be dependent on hepatocyte-associated VWF and platelet-bound glycoprotein Ib alpha. Conclusions. VWF on isolated Hc causes, in contact with blood, adhesion of platelets, which thereby forms an ideal surface for coagulation. This phenomenon needs to be considered in hepatocyte-based reconstitution therapy and possibly even in other settings of cell transplantation.
  •  
6.
  • Teramura, Yuji, et al. (författare)
  • A hybrid of cells and pancreatic islets toward a new bioartificial pancreas
  • 2016
  • Ingår i: REGENERATIVE THERAPY. - : Elsevier BV. - 2352-3204. ; 3, s. 68-74
  • Forskningsöversikt (refereegranskat)abstract
    • Cell surface engineering using single-stranded DNA-poly(ethylene glycol)-conjugated phospholipid (ssDNA-PEG-lipid) is useful for inducing cell-cell attachment two and three dimensionally. In this review, we summarize our recent techniques for cell surface engineering and their applications to islet transplantation. Because any DNA sequence can be immobilized onto the cell surface by hydrophobic interactions between ssDNA-PEG-lipid and the cellular membrane without impairing cell function, a cell-cell hybrid can be formed through the DNA hybridization. With this technique, it would be possible to create three-dimensional hybrid structures of pancreatic islets coated with various accessory cells, such as patients' own cells, mesenchymal and adipose-derived stem cells, endothelial progenitor cells, neural crest stem cells or regulatory T cells, which might significantly improve the outcome of islet transplantation in diabetic patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy