SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Barceló Milagros) "

Search: WFRF:(Barceló Milagros)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Barceló, Milagros, et al. (author)
  • Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests
  • 2022
  • In: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 110:6, s. 1271-1282
  • Journal article (peer-reviewed)abstract
    • In tropical regions, the patterns of carbon (C) and nutrient properties among ecosystems dominated by distinct mycorrhizal associations are unknown. We aim to reveal whether the dynamics differ and the ecological drivers and ecosystem functioning implications of such differences. Based on a dataset of 97 tropical forest sites, we related EcM trees abundance (as a proxy for the transition from AM to EcM trees dominance) to different topsoil properties, climatic conditions and microbial abundance proxies through Generalized Additive Models. Higher abundances of EcM trees were correlated with higher topsoil concentrations of total nitrogen and C, extractable phosphorus and potassium, δ13C, mean annual temperature, precipitation, microbial (bacterial and fungal) biomass and the relative abundance of saprotrophic fungi. Synthesis. Our results reveal consistent differences in carbon and nutrient content between arbuscular mycorrhizal (AM-) and EcM-dominated vegetation across the tropical biome, pointing to lower soil fertility and lower rates of C and nutrient transformation processes in EcM-dominated forests. These patterns associate with lower topsoil C accumulation when compared to AM vegetation, which contrasts with patterns reported for temperate forests. We suggest that different mechanisms of soil organic matter accumulation explain the contrasting impacts of EcM dominance on topsoil properties of temperate and tropical biomes. Global vegetation and C models should account for the contrasting impacts of distinct mycorrhizal vegetation in different climatic zones.
  •  
2.
  • He, Liyuan, et al. (author)
  • Global biogeography of fungal and bacterial biomass carbon in topsoil
  • 2020
  • In: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717. ; 151
  • Journal article (peer-reviewed)abstract
    • Bacteria and fungi, representing two major soil microorganism groups, play an important role in global nutrient biogeochemistry. Biogeographic patterns of bacterial and fungal biomass are of fundamental importance for mechanistically understanding nutrient cycling. We synthesized 1323 data points of phospholipid fatty acid-derived fungal biomass C (FBC), bacterial biomass C (BBC), and fungi:bacteria (F:B) ratio in topsoil, spanning 11 major biomes. The FBC, BBC, and F:B ratio display clear biogeographic patterns along latitude and environmental gradients including mean annual temperature, mean annual precipitation, net primary productivity, root C density, soil temperature, soil moisture, and edaphic factors. At the biome level, tundra has the highest FBC and BBC densities at 3684 (95% confidence interval: 1678–8084) mg kg−1 and 428 (237–774) mg kg−1, respectively; desert has the lowest FBC and BBC densities at 16.92 (14.4–19.89) mg kg−1 and 6.83 (6.1–7.65) mg kg−1, respectively. The F:B ratio varies dramatically, ranging from 1.8 (1.6–2.1) in savanna to 8.6 (6.7–11.0) in tundra. An empirical model was developed for the F:B ratio and it is combined with a global dataset of soil microbial biomass C to produce global maps for FBC and BBC in 0–30 cm topsoil. Across the globe, the highest FBC is found in boreal forest and tundra while the highest BBC is in boreal forest and tropical/subtropical forest, the lowest FBC and BBC are in shrub and desert. Global stocks of living microbial biomass C were estimated to be 12.6 (6.6–16.4) Pg C for FBC and 4.3 (0.5–10.3) Pg C for BBC in topsoil. These findings advance our understanding of the global distribution of fungal and bacterial biomass, which facilitates the incorporation of fungi and bacteria into Earth system models. The global maps of bacterial and fungal biomass serve as a benchmark for validating microbial models in simulating the global C cycle under a changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view