SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bardies Manuel) "

Sökning: WFRF:(Bardies Manuel)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bardies, Manuel, et al. (författare)
  • Quantitative imaging for clinical dosimetry
  • 2006
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 569:2, s. 467-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.
  •  
3.
  • Chouin, Nicolas, et al. (författare)
  • Alpha-particle microdosimetry.
  • 2011
  • Ingår i: Current radiopharmaceuticals. - 1874-4729. ; 4:3, s. 266-80
  • Tidskriftsartikel (refereegranskat)abstract
    • With the increasing availability of alpha emitters, targeted α-particle therapy has emerged as a solution of choice to treat haematological cancers and micrometastatic and minimal residual diseases. Alpha-particles are highly cytotoxic because of their high linear energy transfer (LET) and have a short range of a few cell diameters in tissue, assuring good treatment specificity. These radiologic features make conventional dosimetry less relevant for that context. Stochastic variations in the energy deposited in cell nuclei are important because of the microscopic target size, low number of α- particle traversals, and variation in LET along the α-particle track. Microdosimetry provides a conceptual framework that aims at a systematic analysis of the stochastic distribution of energy deposits in irradiated matter. The different quantities of microdosimetry and the different methods of microdosimetric calculations were described in the early eighties. Since then, numerous models have been published through the years and applied to analyse experimental data or to model realistic therapeutic situations. Major results have been an accurate description of the high toxicity of α-particles, and the description of the predominant effect of activity distribution at the cellular scale on toxicity or efficacy of potential targeted α-particle therapies. This last factor represents a major limitation to the use of microdosimetry in vivo because determination of the source - target distribution is complicated. The future contributions of microdosimetry in targeted α-particle therapy research will certainly depend on the ability to develop high-resolution detectors and on the implementation of pharmaco-kinetic models at the tumour microenvironment scale.
  •  
4.
  • Peters, Steffie, et al. (författare)
  • Implementation of dosimetry for molecular radiotherapy; results from a European survey
  • Ingår i: Physica Medica. - 1120-1797.
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The use of molecular radiotherapy (MRT) has been rapidly evolving over the last years. The aim of this study was to assess the current implementation of dosimetry for MRTs in Europe. Methods: A web-based questionnaire was open for treating centres between April and June 2022, and focused on 2020–2022. Questions addressed the application of 16 different MRTs, the availability and involvement of medical physicists, software used, quality assurance, as well as the target regions for dosimetry, whether treatment planning and/or verification were performed, and the dosimetric methods used. Results: A total of 173 responses suitable for analysis was received from centres performing MRT, geographically distributed over 27 European countries. Of these, 146 centres (84 %) indicated to perform some form of dosimetry, and 97 % of these centres had a medical physicist available and almost always involved in dosimetry. The most common MRTs were 131I-based treatments for thyroid diseases and thyroid cancer, and [223Ra]RaCl2 for bone metastases. The implementation of dosimetry varied widely between therapies, from almost all centres performing dosimetry-based planning for microsphere treatments to none for some of the less common treatments (like 32P sodium-phosphate for myeloproliferative disease and [89Sr]SrCl2 for bone metastases). Conclusions: Over the last years, implementation of dosimetry, both for pre-therapeutic treatment planning and post-therapy absorbed dose verification, increased for several treatments, especially for microsphere treatments. For other treatments that have moved from research to clinical routine, the use of dosimetry decreased in recent years. However, there are still large differences both across and within countries.
  •  
5.
  • Sjögreen-Gleisner, Katarina, et al. (författare)
  • EFOMP policy statement NO. 19 : Dosimetry in nuclear medicine therapy – Molecular radiotherapy
  • 2023
  • Ingår i: Physica Medica. - 1120-1797. ; 116
  • Forskningsöversikt (refereegranskat)abstract
    • The European Council Directive 2013/59/Euratom (BSS Directive) includes optimisation of treatment with radiotherapeutic procedures based on patient dosimetry and verification of the absorbed doses delivered. The present policy statement summarises aspects of three directives relating to the therapeutic use of radiopharmaceuticals and medical devices, and outlines the steps needed for implementation of patient dosimetry for radioactive drugs. To support the transition from administrations of fixed activities to personalised treatments based on patient-specific dosimetry, EFOMP presents a number of recommendations including: increased networking between centres and disciplines to support data collection and development of codes-of-practice; resourcing to support an infrastructure that permits routine patient dosimetry; research funding to support investigation into individualised treatments; inter-disciplinary training and education programmes; and support for investigator led clinical trials. Close collaborations between the medical physicist and responsible practitioner are encouraged to develop a similar pathway as is routine for external beam radiotherapy and brachytherapy. EFOMP's policy is to promote the roles and responsibilities of medical physics throughout Europe in the development of molecular radiotherapy to ensure patient benefit. As the BSS directive is adopted throughout Europe, unprecedented opportunities arise to develop informed treatments that will mitigate the risks of under- or over-treatments.
  •  
6.
  • Uusijärvi, Helena, 1979, et al. (författare)
  • Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
  • 2009
  • Ingår i: Cancer biotherapy & radiopharmaceuticals. - : Mary Ann Liebert Inc. - 1557-8852 .- 1084-9785. ; 24:4, s. 461-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Point kernels describe the energy deposited at a certain distance from an isotropic point source and are useful for nuclear medicine dosimetry. They can be used for absorbed-dose calculations for sources of various shapes and are also a useful tool when comparing different Monte Carlo (MC) codes. The aim of this study was to compare point kernels calculated by using the mixed MC code, PENELOPE (v. 2006), with point kernels calculated by using the condensed-history MC codes, ETRAN, GEANT4 (v. 8.2), and MCNPX (v. 2.5.0). Point kernels for electrons with initial energies of 10, 100, 500, and 1 MeV were simulated with PENELOPE. Spherical shells were placed around an isotropic point source at distances from 0 to 1.2 times the continuous-slowing-down-approximation range (R(CSDA)). Detailed (event-by-event) simulations were performed for electrons with initial energies of less than 1 MeV. For 1-MeV electrons, multiple scattering was included for energy losses less than 10 keV. Energy losses greater than 10 keV were simulated in a detailed way. The point kernels generated were used to calculate cellular S-values for monoenergetic electron sources. The point kernels obtained by using PENELOPE and ETRAN were also used to calculate cellular S-values for the high-energy beta-emitter, 90Y, the medium-energy beta-emitter, 177Lu, and the low-energy electron emitter, 103mRh. These S-values were also compared with the Medical Internal Radiation Dose (MIRD) cellular S-values. The greatest differences between the point kernels (mean difference calculated for distances, <0.9 r/R(CSDA)), using PENELOPE and those from ETRAN, GEANT4, and MCNPX, were 3.6%, 6.2%, and 14%, respectively. The greatest difference between the cellular S-values for monoenergetic electrons was 1.4%, 2.5%, and 6.9% for ETRAN, GEANT4, and MCNPX, respectively, compared to PENELOPE, if omitting the S-values when the activity was distributed on the cell surface for 10-keV electrons. The largest difference between the cellular S-values for the radionuclides, between PENELOPE and ETRAN, was seen for 177Lu (1.2%). There were large differences between the MIRD cellular S-values and those obtained from PENELOPE: up to 420% for monoenergetic electrons and <22% for the radionuclides, with the largest difference for 103mRh. In conclusion, differences were found between the point kernels generated by different MC codes, but these differences decreased when cellular S-values were calculated, and decreased even further when the energy spectra of the radionuclides were taken into consideration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy