SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barnes Piers R F) "

Sökning: WFRF:(Barnes Piers R F)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cappel, Ute B, et al. (författare)
  • Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces.
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures.
  •  
2.
  • Moia, Davide, et al. (författare)
  • The Role of Hole Transport between Dyes in Solid-State Dye-Sensitized Solar Cells
  • 2015
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 119:33, s. 18975-18985
  • Tidskriftsartikel (refereegranskat)abstract
    • In dye-sensitized solar cells (DSSCs) photo-generated positive charges are normally considered to be carried away from the dyes by a separate phase of hole-transporting material (HTM). We show that there can also be significant transport within the dye monolayer itself before the hole reaches the HTM. We quantify the fraction of dye regeneration in solid-state DSSCs that can be attributed to this process. By using cyclic voltammetry and transient anisotropy spectroscopy, we demonstrate that the rate of interdye hole transport is prevented both on micrometer and nanometer length scales by reducing the dye loading on the TiO2 surface. The dye regeneration yield is quantified for films with high and low dye loadings (with and without hole percolation in the dye monolayer) infiltrated with varying levels of HTM. Interdye hole transport can account for >50% of the overall dye regeneration with low HTM pore filling. This is reduced to about 5% when the infiltration of the HTM in the pores is optimized in 2 mu m thick films. Finally, we use hole transport in the dye monolayer to characterize the spatial distribution of the HTM phase in the pores of the dyed mesoporous TiO2.
  •  
3.
  • Pan, Jiaxin, et al. (författare)
  • Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Conventional spectroscopies are not sufficiently selective to comprehensively understand the behaviour of trapped carriers in perovskite solar cells, particularly under their working conditions. Here we use infrared optical activation spectroscopy (i.e., pump-push-photocurrent), to observe the properties and real-time dynamics of trapped carriers within operando perovskite solar cells. We compare behaviour differences of trapped holes in pristine and surface-passivated FA(0.99)Cs(0.01)PbI(3) devices using a combination of quasi-steady-state and nanosecond time-resolved pump-push-photocurrent, as well as kinetic and drift-diffusion models. We find a two-step trap-filling process: the rapid filling (similar to 10 ns) of low-density traps in the bulk of perovskite, followed by the slower filling (similar to 100 ns) of high-density traps at the perovskite/hole transport material interface. Surface passivation by n-octylammonium iodide dramatically reduces the number of trap states (similar to 50 times), improving the device performance substantially. Moreover, the activation energy (similar to 280 meV) of the dominant hole traps remains similar with and without surface passivation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy