SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barouki Robert) "

Sökning: WFRF:(Barouki Robert)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Heindel, Jerrold J., et al. (författare)
  • Obesity II : Establishing causal links between chemical exposures and obesity
  • 2022
  • Ingår i: Biochemical Pharmacology. - : Elsevier. - 0006-2952 .- 1356-1839 .- 1873-2968. ; 199
  • Forskningsöversikt (refereegranskat)abstract
    • Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
  •  
3.
  • Lustig, Robert H., et al. (författare)
  • Obesity I : Overview and molecular and biochemical mechanisms
  • 2022
  • Ingår i: Biochemical Pharmacology. - : Elsevier. - 0006-2952 .- 1356-1839. ; 199
  • Forskningsöversikt (refereegranskat)abstract
    • Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis " (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
  •  
4.
  • Barouki, Robert, et al. (författare)
  • The COVID-19 pandemic and global environmental change : Emerging research needs
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • The outbreak of COVID-19 raised numerous questions on the interactions between the occurrence of new infections, the environment, climate and health. The European Union requested the H2020 HERA project which aims at setting priorities in research on environment, climate and health, to identify relevant research needs regarding Covid-19. The emergence and spread of SARS-CoV-2 appears to be related to urbanization, habitat destruction, live animal trade, intensive livestock farming and global travel. The contribution of climate and air pollution requires additional studies. Importantly, the severity of COVID-19 depends on the interactions between the viral infection, ageing and chronic diseases such as metabolic, respiratory and cardiovascular diseases and obesity which are themselves influenced by environmental stressors. The mechanisms of these interactions deserve additional scrutiny. Both the pandemic and the social response to the disease have elicited an array of behavioural and societal changes that may remain long after the pandemic and that may have long term health effects including on mental health. Recovery plans are currently being discussed or implemented and the environmental and health impacts of those plans are not clearly foreseen. Clearly, COVID-19 will have a longlasting impact on the environmental health field and will open new research perspectives and policy needs.
  •  
5.
  • Bopp, Stephanie K., et al. (författare)
  • Current EU research activities on combined exposure to multiple chemicals
  • 2018
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 120, s. 544-562
  • Forskningsöversikt (refereegranskat)abstract
    • Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals. If exposure to multiple chemicals is considered in a legislative framework, it is usually limited to chemicals falling within this framework and co-exposure to chemicals that are covered by a different regulatory framework is often neglected. Methodologies and guidance for assessing risks from combined exposure to multiple chemicals have been developed for different regulatory sectors, however, a harmonised, consistent approach for performing mixture risk assessments and management across different regulatory sectors is lacking. At the time of this publication, several EU research projects are running, funded by the current European Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme. They aim at addressing knowledge gaps and developing methodologies to better assess chemical mixtures, by generating and making available internal and external exposure data, developing models for exposure assessment, developing tools for in silico and in vitro effect assessment to be applied in a tiered framework and for grouping of chemicals, as well as developing joint epidemiological-toxicological approaches for mixture risk assessment and for prioritising mixtures of concern. The projects EDC-MixRisk, EuroMix, EUToxRisk, HBM4EU and SOLUTIONS have started an exchange between the consortia, European Commission Services and EU Agencies, in order to identify where new methodologies have become available and where remaining gaps need to be further addressed. This paper maps how the different projects contribute to the data needs and assessment methodologies and identifies remaining challenges to be further addressed for the assessment of chemical mixtures.
  •  
6.
  • De Castelbajac, Thalia, et al. (författare)
  • Innovative tools and methods for toxicity testing within PARC work package 5 on hazard assessment
  • 2023
  • Ingår i: Frontiers in Toxicology. - : Frontiers Media S.A.. - 2673-3080. ; 5
  • Forskningsöversikt (refereegranskat)abstract
    • New approach methodologies (NAMs) have the potential to become a major component of regulatory risk assessment, however, their actual implementation is challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) was designed to address many of the challenges that exist for the development and implementation of NAMs in modern chemical risk assessment. PARC's proximity to national and European regulatory agencies is envisioned to ensure that all the research and innovation projects that are initiated within PARC agree with actual regulatory needs. One of the main aims of PARC is to develop innovative methodologies that will directly aid chemical hazard identification, risk assessment, and regulation/policy. This will facilitate the development of NAMs for use in risk assessment, as well as the transition from an endpoint-based animal testing strategy to a more mechanistic-based NAMs testing strategy, as foreseen by the Tox21 and the EU Chemical's Strategy for Sustainability. This work falls under work package 5 (WP5) of the PARC initiative. There are three different tasks within WP5, and this paper is a general overview of the five main projects in the Task 5.2 'Innovative Tools and methods for Toxicity Testing,' with a focus on Human Health. This task will bridge essential regulatory data gaps pertaining to the assessment of toxicological prioritized endpoints such as non-genotoxic carcinogenicity, immunotoxicity, endocrine disruption (mainly thyroid), metabolic disruption, and (developmental and adult) neurotoxicity, thereby leveraging OECD's and PARC's AOP frameworks. This is intended to provide regulatory risk assessors and industry stakeholders with relevant, affordable and reliable assessment tools that will ultimately contribute to the application of next-generation risk assessment (NGRA) in Europe and worldwide.
  •  
7.
  • Drakvik, Elina, et al. (författare)
  • Priorities for research on environment, climate and health, a European perspective
  • 2022
  • Ingår i: Environmental Health. - : Springer Science and Business Media LLC. - 1476-069X. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change, urbanisation, chemical pollution and disruption of ecosystems, including biodiversity loss, affect our health and wellbeing. Research is crucial to be able to respond to the current and future challenges that are often complex and interconnected by nature. The HERA Agenda, summarised in this commentary, identifies six thematic research goals in the environment, climate and health fields. These include research to 1) reduce the effects of climate change and biodiversity loss on health and environment, 2) promote healthy lives in cities and communities, 3) eliminate harmful chemical exposures, 4) improve health impact assessment and implementation research, 5) develop infrastructures, technologies and human resources and 6) promote research on transformational change towards sustainability. Numerous specific recommendations for research topics, i.e., specific research goals, are presented under each major research goal. Several methods were used to define the priorities, including web-based surveys targeting researchers and stakeholder groups as well as a series of online and face-to-face workshops, involving hundreds of researchers and other stakeholders. The results call for an unprecedented effort to support a better understanding of the causes, interlinkages and impacts of environmental stressors on health and the environment. This will require breakdown of silos within policies, research, actors as well as in our institutional arrangements in order to enable more holistic approaches and solutions to emerge. The HERA project has developed a unique and exciting opportunity in Europe to consensuate priorities in research and strengthen research that has direct societal impact. 
  •  
8.
  • Gorrochategui, Eva, et al. (författare)
  • High-resolution mass spectrometry identifies delayed biomarkers for improved precision in acetaminophen/paracetamol human biomonitoring
  • 2023
  • Ingår i: Environment International. - 0160-4120. ; 181
  • Tidskriftsartikel (refereegranskat)abstract
    • Paracetamol/acetaminophen (N-acetyl-p-aminophenol, APAP) is a top selling analgesic used in more than 600 prescription and non-prescription pharmaceuticals. To study efficiently some of the potential undesirable effects associated with increasing APAP consumption (e.g., developmental disorders, drug-induced liver injury), there is a need to improve current APAP biomonitoring methods that are limited by APAP short half-life. Here, we demonstrate using high-resolution mass spectrometry (HRMS) in several human studies that APAP thiomethyl metabolite conjugates (S-methyl-3-thioacetaminophen sulfate and S-methyl-3-thioacetaminophen sulphoxide sulfate) are stable biomarkers with delayed excretion rates compared to conventional APAP metabolites, that could provide a more reliable history of APAP ingestion in epidemiological studies. We also show that these biomarkers could serve as relevant clinical markers to diagnose APAP acute intoxication in overdosed patients, when free APAP have nearly disappeared from blood. Using in vitro liver models (HepaRG cells and primary human hepatocytes), we then confirm that these thiomethyl metabolites are directly linked to the toxic N-acetyl-p-benzoquinone imine (NAPQI) elimination, and produced via an overlooked pathway called the thiomethyl shunt pathway. Further studies will be needed to determine whether the production of the reactive hepatotoxic NAPQI metabolites is currently underestimated in human. Nevertheless, these biomarkers could already serve to improve APAP human biomonitoring, and investigate, for instance, inter-individual variability in NAPQI production to study underlying causes involved in APAP-induced hepatotoxicity. Overall, our findings demonstrate the potential of exposomics-based HRMS approach to advance towards a better precision for human biomonitoring.
  •  
9.
  • Halonen, Jaana I., et al. (författare)
  • A call for urgent action to safeguard our planet and our health in line with the helsinki declaration
  • 2021
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 193
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2015, the Rockefeller Foundation-Lancet Commission launched a report introducing a novel approach called Planetary Health and proposed a concept, a strategy and a course of action. To discuss the concept of Planetary Health in the context of Europe, a conference entitled: "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki in December 2019. The conference participants concluded with a need for action to support Planetary Health during the 2020s. The Helsinki Declaration emphasizes the urgency to act as scientific evidence shows that human activities are causing climate change, biodiversity loss, land degradation, overuse of natural resources and pollution. They threaten the health and safety of human kind.Global, regional, national, local and individual initiatives are called for and multidisciplinary and multisectorial actions and measures are needed. A framework for an action plan is suggested that can be modified for local needs. Accordingly, a shift from fragmented approaches to policy and practice towards systematic actions will promote human health and health of the planet. Systems thinking will feed into conserving nature and biodiversity, and into halting climate change.The Planetary Health paradigm ‒ the health of human civilization and the state of natural systems on which it depends ‒ must become the driver for all policies.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (7)
forskningsöversikt (4)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Barouki, Robert (11)
Kogevinas, Manolis (4)
Bergman, Åke, 1950- (4)
Blanc, Etienne (4)
Lind, Lars (3)
Peters, Annette (3)
visa fler...
Vermeulen, Roel (3)
Audouze, Karine (3)
Haines, Andrew (3)
Paloniemi, Riikka (3)
Heindel, Jerrold J. (3)
Gilbertson, Michael (3)
Kolossa-Gehring, Mar ... (3)
Vondracek, Jan (3)
Howard, Sarah (3)
Bansal, Amita (3)
Cave, Matthew C. (3)
Chatterjee, Saurabh (3)
Choudhury, Mahua (3)
Collier, David (3)
Lanki, Timo (2)
Lind, P. Monica, 195 ... (2)
Rüegg, Joelle (2)
Haahtela, Tari (2)
Virtanen, Suvi M. (2)
Jousilahti, Pekka (2)
Nieuwenhuijsen, Mark (2)
Drakvik, Elina (2)
Anto, Josep M. (2)
Bousquet, Jean (2)
Blumberg, Bruce (2)
Erhola, Marina (2)
Halonen, Jaana I. (2)
Furman, Eeva (2)
Billo, Nils E. (2)
Fuller, Richard (2)
Krauze, Kinga (2)
Vicente, Joana Lobo (2)
Messerli, Peter (2)
Posch, Karl-Heinz (2)
Timonen, Pekka (2)
Agay-Shay, Keren (2)
Arrebola, Juan P. (2)
Babin, Patrick J. (2)
Chevalier, Nicolas (2)
Connolly, Lisa (2)
Coumoul, Xavier (2)
Garruti, Gabriella (2)
Hoepner, Lori A. (2)
Holloway, Alison C. (2)
visa färre...
Lärosäte
Uppsala universitet (4)
Karolinska Institutet (4)
Stockholms universitet (3)
Örebro universitet (3)
Umeå universitet (1)
Linköpings universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Medicin och hälsovetenskap (6)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy