SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Barrows Timothy T.) "

Search: WFRF:(Barrows Timothy T.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fitzsimmons, Kathryn E., et al. (author)
  • Late Quaternary palaeoenvironmental change in the Australian drylands
  • 2013
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 74, s. 78-96
  • Journal article (peer-reviewed)abstract
    • In this paper we synthesise existing palaeoenvironmental data from the arid and semi-arid interior of the Australian continent for the period 40-0 ka. Moisture is the predominant variable controlling environmental change in the arid zone. Landscapes in this region respond more noticeably to changes in precipitation than to temperature. Depending on their location, arid zone records broadly respond to tropical monsoon-influenced climate regimes, the temperate latitude westerly systems, or a combination of both. The timing and extent of relatively arid and humid phases vary across the continent, in particular between the westerly wind-controlled temperate latitudes, and the interior and north which are influenced by tropically sourced precipitation. Relatively humid phases in the Murray-Darling Basin on the semi-arid margins, which were characterised by large rivers most likely fed by snow melt, prevailed from 40 ka to the Last Glacial Maximum (LGM), and from the deglacial to the mid Holocene. By contrast, the Lake Eyre basin in central Australia remained relatively dry throughout the last 40 ka, with lake high stands at lake Frome around 35-30 ka, and parts of the deglacial period and the mid-Holocene. The LGM was characterised by widespread relative aridity and colder conditions, as evidenced by extensive desert dune activity and dust transport, lake level fall, and reduced but episodic fluvial activity. The climate of the deglacial period was spatially divergent. The southern part of the continent experienced a brief humid phase around similar to 17-15 ka, followed by increased dune activity around similar to 14-10 ka. This contrasts with the post-LGM persistence of arid conditions in the north, associated with a lapsed monsoon and reflected in lake level lows and reduced fluvial activity, followed by intensification of the monsoon and increasingly effective precipitation from similar to 14 ka. Palaeoenvironmental change during the Holocene was also spatially variable. The early to mid-Holocene was, however, generally characterised by moderately humid conditions, demonstrated by lake level rise, source-bordering dune activity, and speleothem growth, persisting at different times across the continent. Increasingly arid conditions developed into the late Holocene, particularly in the central arid zone.
  •  
2.
  • Reeves, Jessica M., et al. (author)
  • Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region : an OZ-INTIMATE compilation
  • 2013
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 74, s. 21-34
  • Journal article (peer-reviewed)abstract
    • The Australian region spans some 600 of latitude and 500 of longitude and displays considerable regional climate variability both today and during the Late Quaternary. A synthesis of marine and terrestrial climate records, combining findings from the Southern Ocean, temperate, tropical and arid zones, identifies a complex response of climate proxies to a background of changing boundary conditions over the last 35,000 years. Climate drivers include the seasonal timing of insolation, greenhouse gas content of the atmosphere, sea level rise and ocean and atmospheric circulation changes. Our compilation finds few climatic events that could be used to construct a climate event stratigraphy for the entire region, limiting the usefulness of this approach. Instead we have taken a spatial approach, looking to discern the patterns of change across the continent. The data identify the clearest and most synchronous climatic response at the time of the Last Glacial Maximum (LGM) (21 +/- 3 ka), with unambiguous cooling recorded in the ocean, and evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea level rise and its associated regional impacts have played an important role in determining the magnitude and timing of climate response in the north-west of the continent in contrast to the southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene period is a time of considerable climate variability associated with an intense monsoon in the tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El Nino-dominated ENSO to the present. The influence of ENSO is evident throughout the southeast of Australia, but not the southwest. This climate history provides a template from which to assess the regionality of climate events across Australia and make comparisons beyond our region.
  •  
3.
  • Reeves, Jessica M., et al. (author)
  • Palaeoenvironmental change in tropical Australasia over the last 30,000 years - a synthesis by the OZ-INTIMATE group
  • 2013
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 74, s. 97-114
  • Journal article (peer-reviewed)abstract
    • The tropics are the major source of heat and moisture for the Australasian region. Determining the tropics' response over time to changes in climate forcing mechanisms, such as summer insolation, and the effects of relative sea level on exposed continental shelves during the Last Glacial period, is an ongoing process of re-evaluation. We present a synthesis of climate proxy data from tropical Australasia spanning the last 30,000 years that incorporates deep sea core, coral, speleothem, pollen, charcoal and terrestrial sedimentary records. Today, seasonal variability is governed largely by the annual migration of the inter-tropical convergence zone (ITCZ), influencing this region most strongly during the austral summer. However, the position of the ITCZ has varied through time. Towards the end of Marine Isotope Stage (MIS) 3, conditions were far wetter throughout the region, becoming drier first in the south. Universally cooler land and sea-surface temperature (SST) were characteristic of the Last Glacial Maximum, with drier conditions than previously, although episodic wet periods are noted in the fluvial records of northern Australia. The deglacial period saw warming first in the Coral Sea and then the Indonesian seas, with a pause in this trend around the time of the Antarctic Cold Reversal (c. 14.5 ka), coincident with the flooding of the Sunda Shelf. Wetter conditions occurred first in Indonesia around 17 ka and northern Australia after 14 ka. The early Holocene saw a peak in marine SST to the northwest and northeast of Australia. Modern vegetation was first established on Indonesia, then progressively south and eastward to NE Australia. Flores and the Atherton Tablelands show a dry period around 11.6 ka, steadily becoming wetter through the early Holocene. The mid-late Holocene was punctuated by millennial-scale variability, associated with the El Nino-Southern Oscillation; this is evident in the marine, coral, speleothem and pollen records of the region.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view