SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barrozo Alexandre) "

Sökning: WFRF:(Barrozo Alexandre)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baier, Florian, et al. (författare)
  • Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes
  • 2019
  • Ingår i: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variation among orthologous proteins can cause cryptic phenotypic properties that only manifest in changing environments. Such variation may impact the evolvability of proteins, but the underlying molecular basis remains unclear. Here, we performed comparative directed evolution of four orthologous metallo-beta-lactamases toward a new function and found that different starting genotypes evolved to distinct evolutionary outcomes. Despite a low initial fitness, one ortholog reached a significantly higher fitness plateau than its counterparts, via increasing catalytic activity. By contrast, the ortholog with the highest initial activity evolved to a less-optimal and phenotypically distinct outcome through changes in expression, oligomerization and activity. We show how cryptic molecular properties and conformational variation of active site residues in the initial genotypes cause epistasis, that could lead to distinct evolutionary outcomes. Our work highlights the importance of understanding the molecular details that connect genetic variation to protein function to improve the prediction of protein evolution.
  •  
2.
  • Barrozo, Alexandre, et al. (författare)
  • Computational Protein Engineering: Bridging the Gap between Rational Design and Laboratory Evolution
  • 2012
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 13:10, s. 12428-12460
  • Forskningsöversikt (refereegranskat)abstract
    • Enzymes are tremendously proficient catalysts, which can be used as extracellular catalysts for a whole host of processes, from chemical synthesis to the generation of novel biofuels. For them to be more amenable to the needs of biotechnology, however, it is often necessary to be able to manipulate their physico-chemical properties in an efficient and streamlined manner, and, ideally, to be able to train them to catalyze completely new reactions. Recent years have seen an explosion of interest in different approaches to achieve this, both in the laboratory, and in silico. There remains, however, a gap between current approaches to computational enzyme design, which have primarily focused on the early stages of the design process, and laboratory evolution, which is an extremely powerful tool for enzyme redesign, but will always be limited by the vastness of sequence space combined with the low frequency for desirable mutations. This review discusses different approaches towards computational enzyme design and demonstrates how combining newly developed screening approaches that can rapidly predict potential mutation “hotspots” with approaches that can quantitatively and reliably dissect the catalytic step can bridge the gap that currently exists between computational enzyme design and laboratory evolution studies.
  •  
3.
  • Barrozo, Alexandre, et al. (författare)
  • Computer simulations of the catalytic mechanism of wild-type and mutant beta-phosphoglucomutase
  • 2018
  • Ingår i: Organic and biomolecular chemistry. - : Royal Society of Chemistry. - 1477-0520 .- 1477-0539. ; 16:12, s. 2060-2073
  • Tidskriftsartikel (refereegranskat)abstract
    • beta-Phosphoglucomutase (beta-PGM) has served as an important model system for understanding biological phosphoryl transfer. This enzyme catalyzes the isomerization of beta-glucose-1-phosphate to -glucose-6-phosphate in a two-step process proceeding via a bisphosphate intermediate. The conventionally accepted mechanism is that both steps are concerted processes involving acid-base catalysis from a nearby aspartate (D10) side chain. This argument is supported by the observation that mutation of D10 leaves the enzyme with no detectable activity. However, computational studies have suggested that a substrate-assisted mechanism is viable for many phosphotransferases. Therefore, we carried out empirical valence bond (EVB) simulations to address the plausibility of this mechanistic alternative, including its role in the abolished catalytic activity of the D10S, D10C and D10N point mutants of beta-PGM. In addition, we considered both of these mechanisms when performing EVB calculations of the catalysis of the wild type (WT), H20A, H20Q, T16P, K76A, D170A and E169A/D170A protein variants. Our calculated activation free energies confirm that D10 is likely to serve as the general base/acid for the reaction catalyzed by the WT enzyme and all its variants, in which D10 is not chemically altered. Our calculations also suggest that D10 plays a dual role in structural organization and maintaining electrostatic balance in the active site. The correct positioning of this residue in a catalytically competent conformation is provided by a functionally important conformational change in this enzyme and by the extensive network of H-bonding interactions that appear to be exquisitely preorganized for the transition state stabilization.
  •  
4.
  • Barrozo, Alexandre, et al. (författare)
  • Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily
  • 2015
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 137:28, s. 9061-9076
  • Tidskriftsartikel (refereegranskat)abstract
    • It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifunctionality. In the present work, we model the selectivity of two multiply promiscuous members of this superfamily, namely the phosphonate monoester hydrolases from Burkholderia caryophylli and Rhizobium leguminosarum. We have performed extensive simulations of the enzymatic reaction of both wild-type enzymes and several experimentally characterized mutants. Our computational models are in agreement with key experimental observables, such as the observed activities of the wild-type enzymes, qualitative interpretations of experimental pH-rate profiles, and activity trends among several active site mutants. In all cases the substrates of interest bind to the enzyme in similar conformations, with largely unperturbed transition states from their corresponding analogues in aqueous solution. Examination of transition-state geometries and the contribution of individual residues to the calculated activation barriers suggest that the broad promiscuity of these enzymes arises from cooperative electrostatic interactions in the active site, allowing each enzyme to adapt to the electrostatic needs of different substrates. By comparing the structural and electrostatic features of several alkaline phosphatases, we suggest that this phenomenon is a generalized feature driving selectivity and promiscuity within this superfamily and can be in turn used for artificial enzyme design.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Barrozo, Alexandre H., et al. (författare)
  • Understanding Functional Evolution in the Alkaline Phosphatase Superfamily
  • 2014
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 106:2, s. 675A-675A
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Over the past 40 years, it has been demonstrated that many enzymes are capable of promiscuous catalytic activities, facilitating the turnover of more than one chemically distinct substrate. This has been argued to play an important role in enzyme evolution, with highly promiscuous progenitor enzymes evolving under evolutionary pressure to modern day specialists, while still retaining some level of their former promiscuous activities1. This theory has been extensively tested by different experiments using in vitro evolution2. The alkaline phosphatase superfamily members provide a particularly attractive showcase for studying enzyme promiscuity, as they often show reciprocal promiscuity, in that the native reaction for one member is often a side-reaction for another3. While deceptively similar, their catalyzed reactions (cleavage of P-O and S-O bonds) proceed via distinct transition states and protonation requirements4,5. We present detailed computational studies of the promiscuous catalytic activity of three evolutionarily related members: the arylsulfatase from Pseudomonas aeruginosa6, and the phosphonate monoester hydrolases from Burkholderia caryophili7and Rhizobium leguminosarum8. By tracking their structural and electrostatic features, and comparing to other known members of the superfamily, we provide an atomic-level map for functional evolution within this superfamily.
  •  
9.
  • Barrozo, Alexandre, et al. (författare)
  • Phosphoryl and Sulfuryl Transfer
  • 2016
  • Ingår i: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. - Elsevier.
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  • Barrozo, Alexandre (författare)
  • Promiscuity and Selectivity in Phosphoryl Transferases
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Phosphoryl transfers are essential chemical reactions in key life processes, including energy production, signal transduction and protein synthesis. They are known for having extremely low reaction rates in aqueous solution, reaching the scale of millions of years. In order to make life possible, enzymes that catalyse phosphoryl transfer, phosphoryl transferases, have evolved to be tremendously proficient catalysts, increasing reaction rates to the millisecond timescale.Due to the nature of the electronic structure of phosphorus atoms, understanding how hydrolysis of phosphate esters occurs is a complex task. Experimental studies on the hydrolysis of phosphate monoesters with acidic leaving groups suggest a concerted mechanism with a loose, metaphosphate-like transition state. Theoretical studies have suggested two possible concerted pathways, either with loose or tight transition state geometries, plus the possibility of a stepwise mechanism with the formation of a phosphorane intermediate. Different pathways were shown to be energetically preferable depending on the acidity of the leaving group. Here we performed computational studies to revisit how this mechanistic shift occurs along a series of aryl phosphate monoesters, suggesting possible factors leading to such change.The fact that distinct pathways can occur in solution could mean that the same is possible for an enzyme active site. We performed simulations on the catalytic activity of β-phosphoglucomutase, suggesting that it is possible for two mechanisms to occur at the same time for the phosphoryl transfer.Curiously, several phosphoryl transferases were shown to be able to catalyse not only phosphate ester hydrolysis, but also the cleavage of other compounds. We modeled the catalytic mechanism of two highly promiscuous members of the alkaline phosphatase superfamily. Our model reproduces key experimental observables and shows that these enzymes are electrostatically flexible, employing the same set of residues to enhance the rates of different reactions, with different electrostatic contributions per residue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy