SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barsoum I.) "

Sökning: WFRF:(Barsoum I.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Khan, A., et al. (författare)
  • IFPA Meeting 2010 Workshops Report II: Placental pathology; Trophoblast invasion; Fetal sex; Parasites and the placenta; Decidua and embryonic or fetal loss; Trophoblast differentiation and syncytialisation
  • 2011
  • Ingår i: Placenta. - : Elsevier BV. - 1532-3102 .- 0143-4004. ; 32:Suppl. 2, s. 90-99
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Workshops are an important part of the IFPA annual meeting. At IFPA Meeting 2010 diverse topics were discussed in twelve themed workshops, six of which are summarized in this report. 1. The placental pathology workshop focused on clinical correlates of placenta accreta/percreta. 2. Mechanisms of regulation of trophoblast invasion and spiral artery remodeling were discussed in the trophoblast invasion workshop. 3. The fetal sex and intrauterine stress workshop explored recent work on placental sex differences and discussed them in the context of whether boys live dangerously in the womb.4. The workshop on parasites addressed inflammatory responses as a sign of interaction between placental tissue and parasites. 5. The decidua and embryonic/fetal loss workshop focused on key regulatory mediators in the decidua, embryo and fetus and how alterations in expression may contribute to different diseases and adverse conditions of pregnancy. 6. The trophoblast differentiation and syncytialisation workshop addressed the regulation of villous cytotrophoblast differentiation and how variations may lead to placental dysfunction and pregnancy complications. (C) 2011 Published by IFPA and Elsevier Ltd.
  •  
2.
  • Barsoum, I., et al. (författare)
  • Analysis of the torsional strength of hardened splined shafts
  • 2014
  • Ingår i: Materials and Design. - : Elsevier BV. - 0261-3069. ; 54, s. 130-136
  • Tidskriftsartikel (refereegranskat)abstract
    • The current study presents a finite element modeling framework to determine the torsion strength of hardened splined shafts by taking into account the detailed geometry of the involute spline and the material gradation due to the hardness profile. The aim is to select a spline geometry and hardness depth that optimizes the static torsion strength. Six different spline geometries and seven different hardness profiles including non-hardened and through-hardened shafts have been considered. The results reveal that the torque causing yielding of induction hardened splined shafts is strongly dependent on the hardness depth and the geometry of the spline teeth. The results from the model agree well with experimental results found in the literature and reveal that an optimum hardness depth maximizing the torsional strength can be achieved if shafts are hardened to half their radius.
  •  
3.
  • Barsoum, I., et al. (författare)
  • Thermomechanical Evaluation of the Performance and Integrity of a HDPE Stub-End Bolted Flange Connection
  • 2019
  • Ingår i: Journal of Pressure Vessel Technology-Transactions of the ASME. - : ASME. - 0094-9930 .- 1528-8978. ; 141:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the integrity of a manhole structure made of a 78 in. high density polyethylene (HDPE) stub-end, steel ring, and blind flange, sealed with a compressed nonasbestos fiber (CNAF) gasket is investigated by means of a parametric finite element analysis (FEA). A coupled thermomechanical nonlinear FEA model is built, comprising of a heat transfer and a structural model, which allows modeling the complex thermal and mechanical loads and their interactions present during the operation of the manhole. The temperature-dependent elastic-plastic HDPE material constitutive behavior and the temperature-dependent nonlinear response of the CNAF gasket are accounted for in the model. Factors influencing the performance and integrity of the manhole such as stud-bolt pretorque level (T-b), internal pressure (P-i), and outer temperature (T-o) are considered. Based on the results, the integrity and performance of the structure are assessed in view of a leakage through the gasket criterion and a yielding of the HDPE stub-end criterion. The FEA results reveal that both T-b, P-i, and T-o significantly influence the performance (i.e., leakage) of the gasket and the integrity (i.e., yielding) of the HDPE stubend. At 40 degrees C, it is possible to find a safe operational window for a range of T-b and P-i values, where no leakage through the gasket or yielding of the stub-end occurs. However, as the temperature is increased this safe operational window decreases considerably, and at 80 degrees C safe operation cannot be guaranteed where leakage, yielding, or both simultaneously, will lead to loss in performance and integrity of the manhole structure.
  •  
4.
  • Barsoum, Zuheir, et al. (författare)
  • Fatigue strength evaluation of friction stir welded aluminium joints using the nominal and notch stress concepts
  • 2012
  • Ingår i: Materials & Design. - : Elsevier BV. - 0261-3069. ; 41, s. 231-238
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study the fatigue strength is investigated for Friction Stir Welded (FSW) overlap and butt welded joints in different thicknesses based on nominal and effective notch stress concepts. The fatigue test results are compared with fatigue strength recommendations according to EN 1999-1-3 and International Institute of Welding (IIW). The results are also compared with available published data and Finite Element Analysis (FEA) is carried out to investigate the effect of plate thickness and nugget size on the fatigue strength of overlap joints. 3-3 mm butt welded joints shows the highest fatigue strength in comparison with 3-5 mm butt welded and overlap joints. Slopes of the SN-curves for two different joint types differ from the slope recommended by IIW. A specific failure trend is observed in overlap FSW joints. However, the slopes of the SN-curves are in close agreement with slopes found in EN 1999-1-3. The slopes of various published results and test results presented in this study are in good agreement with each other. The suggested fatigue design curves for the nominal and effective notch stress concept have a higher slope than given for fusion welds by IIW.
  •  
5.
  • Delkhosh, Ehsan, et al. (författare)
  • Fracture mechanics and fatigue life assessment of box-shaped welded structures : FEM analysis and parametric design
  • 2020
  • Ingår i: Welding in the World. - : Springer. - 0043-2288 .- 1878-6669. ; 64:9, s. 1535-1551
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, Linear Elastic Fracture Mechanics (LEFM) approach is used to evaluate the fatigue strength of a box-shaped welded structure. A parametric study is also undertaken to study the effect of various weld parameters on the fatigue strength, such as lack of weld metal penetration, load position, and plate thicknesses. FRANC3D software was adopted to obtain the stress intensity factor values for two types of full-length and intermediate crack sizes, located at the critical region of the weld of the box-shaped structure. It was concluded that the LEFM approach could capture the crack propagation from the weld root reasonably well under the given conditions and estimate residual fatigue life of the welded structures conservatively. Compared to fatigue life estimations by nominal stress method (1,714,564 cycles) or effective notch stress method (63,385 cycles), the LEFM approach can estimate the residual life more accurately. Especially for intermediate (4 mm) lack of penetration (LOP) of weld metal case (589,198 cycles) in comparison to the experiments (1,216,595 cycles). The parametric study showed that the fatigue life increases with increase in the thickness of flanges, lesser LOP in the weld root, and when load is applied more toward the center of the plate. 
  •  
6.
  • Almomani, Abdulla, et al. (författare)
  • Constitutive model calibration for the thermal viscoelastic-viscoplastic behavior of high density polyethylene under monotonic and cyclic loading
  • 2023
  • Ingår i: Polymer testing. - : Elsevier BV. - 0142-9418 .- 1873-2348. ; 118
  • Tidskriftsartikel (refereegranskat)abstract
    • High density polyethylene (HDPE) can show viscoelastic-viscoplastic behaviors under monotonic loads and a stress softening after reloading under cyclic ones. This sets a challenge in simultaneously representing such response in material constitutive models. In addition, due to the adoption of novel accelerated tests at higher temperatures, e.g., 95 degrees C, the need for a higher temperature calibration is motivated. Therefore, the objective of this study is threefold: (i) to investigate the capability of the three network viscoplastic (TNV) model in capturing HDPE thermo-viscoplasticity under monotonic and cyclic loads, (ii) to report observations on HDPE at various strain-rates and temperatures from 23 degrees C to 95 degrees C including the alpha-relaxation region (iii) to explore the ratcheting behavior of HDPE, i.e., cyclic creep. The FEA analysis based on the calibrated TNV model was successfully able to predict the HDPE behavior under static, quasi-static and dynamic loads. The predicted strain range Delta epsilon and midrange strain epsilon s of the cyclic creep showed good agreements. This implies that the TNV model can be a reliable candidate for HDPE engineering assessments. Findings of this work will have many industrial applications, e.g., products manufacturers or resin producers, in which HDPE is used under complex loads. Similar procedures can be followed for other thermoplastics which lays the basis for establishing a standard calibration guideline.
  •  
7.
  • Altamimi, S., et al. (författare)
  • On Stiffness, Strength, Anisotropy, and Buckling of 30 Strut-Based Lattices with Cubic Crystal Structures
  • 2022
  • Ingår i: Advanced Engineering Materials. - : Wiley. - 1438-1656 .- 1527-2648. ; 24:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Architected cellular structures are increasingly receiving attention in numerous applications due to advances in additive manufacturing and their promising multi-functional properties. Herein, 30 architected strut-based lattices of cubic crystal symmetry are developed and their stiffness and strength are investigated computationally and experimentally. Finite element simulations are conducted to compute the effective stiffness, yield strength, and buckling strength under uniaxial, shear, and hydrostatic loadings. Also, elastic anisotropy is assessed and bifurcation analysis is performed to estimate the threshold relative density for each lattice. Selected lattices of various relative densities are 3D printed from a polymeric material using selective laser sintering (SLS). The numerical results show that the modes of deformation whether stretching-dominated, bending-dominated, or mixed differ for the various loading conditions. It is observed that by combining different lattice structures in a hybrid approach, a decrease in the anisotropic behavior is obtained, and an overall enhancement of the mechanical properties is achieved. The numerical results show rather good agreement with the experimental findings. The current study can be crucial for using the investigated lattices for enhancing the multi-functional properties of structural systems.
  •  
8.
  • Barsoum, I., et al. (författare)
  • The effect of stress state on ductility in the moderate stress triaxiality regime of medium and high strength steels
  • 2012
  • Ingår i: International Journal of Mechanical Sciences. - : Elsevier BV. - 0020-7403 .- 1879-2162. ; 65:1, s. 203-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments on double notched tube specimens subjected to tension and torsion were conducted by Barsoum and Faleskog (2007) [8,9]. In this study a complementary experimental investigation was conducted on tensile round circumferentially notched bar specimens. The results from the current study were compared with the results from the double circumferentially notched tube specimens with stress triaxiality larger than 0.7 in order to asses the influence of the Lode parameter on ductility in the moderate stress triaxiality regime. The effective plastic strain, the stress triaxiality T and the Lode parameter L were determined at the center of the notch up to the point of onset of failure by means of finite element. The influence of the Lode parameter on the failure strain was significant for the high strength and low hardening material, whereas for the medium strength and high hardening material the influence of the Lode parameter was less distinguished. The experimental results were then analyzed with the micromechanical model proposed by Barsoum and Faleskog (2011) [15], which is based on the assumption that ductile failure is a consequence of that plastic deformation localizes into a band. The band consists of a square array of equally sized cells, with a spherical void located in the center of each cell, which allows for studying a single 3D unit cell with fully periodic boundary conditions. The unit cell is subjected to a proportional loading such that it resembles the stress state, in terms of T and L, from the experiments. The micromechanical model captures the experimental trend and the influence of L on ductility very well. It is found that the Lode parameter sensitivity increases by the combination of increase in the yield strength and decrease in strain hardening. The fractographical analysis reveals that this Lode parameter sensitivity is associated with the failure characteristics of the material.
  •  
9.
  • Barsoum, I., et al. (författare)
  • The influence of the lode parameter on ductile failure strain in steel
  • 2011
  • Ingår i: ICM11. - : Elsevier BV. ; , s. 69-75
  • Konferensbidrag (refereegranskat)abstract
    • In this study an experimental investigation was conducted on tensile round circumferentially notched bar specimens. The results were compared to the experimental result on double notched tube specimens subjected to tension and torsion conducted in [5]. The comparison was done for moderate stress triaxiality levels larger than 0.7 with the objective to assess the influence of the Lode parameter on the ductile failure strain. The effective plastic strain, the stress triaxiality T and the Lode parameter L were determined at the center of the notch up to the point of failure by means of finite element based on J2-plasticity. The influence of the Lode parameter on the failure strain was remarkable for the high strength and low hardening material, whereas for the medium strength and high hardening material the influence of the Lode parameter was less prominent. The experimental results were then analyzed with the micromechanical model proposed in [6-7] which is based on the assumption that ductile failure is a consequence of that plastic deformation localizing into a band of imperfections. It is found that the micromechanical model captures the experimental trend and thus the influence of L on the ductility very well. It is found that the Lode parameter sensitivity increases with increase in the yield strength. The fractographical analysis reveals that Lode parameter sensitivity is associated with the failure characteristics of the material.
  •  
10.
  • Champagne, A., et al. (författare)
  • First-order Raman scattering of rare-earth containing i-MAX single crystals (Mo2/3RE1/3)(2)AlC (RE = Nd, Gd, Dy, Ho, Er)
  • 2019
  • Ingår i: Physical Review Materials. - : AMER PHYSICAL SOC. - 2475-9953. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we report on the growth of single crystals of various (Mo2/3RE1/3)(2)AlC (RE = Nd, Gd, Dy, Ho, Er) i-MAX phases and their Raman characterization. Using first principles, the wave numbers of the various phonon modes and their relative atomic displacements are calculated and compared to experimental results. Twelve high-intensity Raman peaks are identified as the fingerprint of this new family of rare-earth containing i-MAX phases, thus being a useful tool to investigate their corresponding composition and structural properties. Indeed, while a redshift is observed in the low-wave-number range due to an increase of the rare-earth atomic mass when moving from left to right on the lanthanide row, a blueshift is observed for most of the high-wave-number modes due to a strengthening of the bonds. A complete classification of bond stiffnesses is achieved based on the direct dependence of a phonon mode wave number with respect to the bond stiffness. Finally, STEM images are used to confirm the crystal structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy