SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barth Mary C.) "

Sökning: WFRF:(Barth Mary C.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bardakov, Roman, 1992- (författare)
  • Transport and chemical processing of trace gases in deep convective clouds
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Deep convective clouds can efficiently transport trace gases from the planetary boundary layer to the upper troposphere. Once there, some gases will contribute to new particle formation and growth, eventually producing aerosols that are large enough to influence cloud properties, the radiative budget of the Earth, and climate. The magnitude and exact pathways of the convective transport of many organic and inorganic compounds are, however, still unclear. This dissertation presents a framework to study vertical transport of gas mixtures by deep convective clouds. The method consists of a chemical box model that is driven by cloud air parcel trajectory data generated by large-eddy simulation. This combination allows us to examine detailed gas-cloud interactions as well as complex systems of gas-phase chemical reactions. A large ensemble of simulated cloud trajectories was used to identify and characterize convective up- and downdrafts in the Amazon region. The analysis showed that air parcels starting close to the surface (at 0.5 km) experienced a substantially larger probability of reaching the upper troposphere (above 10 km) than parcels starting at the top of the boundary layer. Furthermore, the framework was used to estimate the vertical transport of isoprene, isoprene oxidation products, ammonia, and several non-reactive trace gases. We found that a typical Amazonian deep convective cloud can transport around 30% of the boundary layer isoprene to the cloud outflow if the efficiency of the gas uptake on ice is high and there is no lightning within the cloud. If the efficiency of gas uptake on ice is low and lightning within the cloud is extensive, all isoprene will be oxidized. Several low-volatility isoprene oxidation products will then have relatively high concentrations in the outflow, which potentially could lead to new particle formation and growth. Another result was that up to 10% of the boundary layer ammonia can reach the cloud outflow, where it in some environments can nucleate synergistically with nitric and sulfuric acid. A key uncertainty in our estimates is the efficiency of gas uptake by ice particles.
  •  
2.
  • Kim, Dongchul, et al. (författare)
  • Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol–climate model
  • 2008
  • Ingår i: Journal of geophysical research: Atmospheres. ; 113:D16, s. D16309-
  • Tidskriftsartikel (refereegranskat)abstract
    • A multimode, two-moment aerosol model has been incorporated in the NCAR CAM3 to develop an interactive aerosol–climate model and to study the impact of anthropogenic aerosols on the global climate system. Currently, seven aerosol modes, namely three for external sulfate and one each for external black carbon (BC), external organic carbon (OC), sulfate/BC mixture (MBS; with BC core coated by sulfate shell), and sulfate/OC mixture (MOS; a uniform mixture of OC and sulfate) are included in the model. Both mass and number concentrations of each aerosol mode, as well as the mass of carbonaceous species in the mixed modes, are predicted by the model so that the chemical, physical, and radiative processes of various aerosols can be formulated depending on aerosol's size, chemical composition, and mixing state. Comparisons of modeled surface and vertical aerosol concentrations, as well as the optical depth of aerosols with available observations and previous model estimates, are in general agreement. However, some discrepancies do exist, likely caused by the coarse model resolution or the constant rates of anthropogenic emissions used to test the model. Comparing to the widely used mass-only method with prescribed geometric size of particles (one-moment scheme), the use of prognostic size distributions of aerosols based on a two-moment scheme in our model leads to a significant reduction in optical depth and thus the radiative forcing at the top of the atmosphere (TOA) of particularly external sulfate aerosols. The inclusion of two types of mixed aerosols alters the mass partitioning of carbonaceous and sulfate aerosol constituents: about 35.5%, 48.5%, and 32.2% of BC, OC, and sulfate mass, respectively, are found in the mixed aerosols. This also brings in competing effects in aerosol radiative forcing including a reduction in atmospheric abundance of BC and OC due to the shorter lifetime of internal mixtures (cooling), a mass loss of external sulfate to mixtures (warming), and an enhancement in atmospheric heating per BC mass due to the stronger absorption extinction of the MBS than external BC (warming). The combined result of including a prognostic size distribution and the mixed aerosols in the model is a much smaller total negative TOA forcing (−0.12 W m−2) of all carbonaceous and sulfate aerosol compounds compared to the cases using one-moment scheme either excluding or including internal mixtures (−0.42 and −0.71 W m−2, respectively). In addition, the global mean all-sky TOA direct forcing of aerosols is significantly more positive than the clear-sky value due to the existence of low clouds beneath the absorbing (external BC and MBS) aerosol layer, particularly over a dark surface. An emission reduction of about 44% for BC and 38% of primary OC is found to effectively change the TOA radiative forcing of the entire aerosol family by −0.14 W m−2 for clear-sky and −0.29 W m−2 for all-sky.
  •  
3.
  • Kim, Dongchul, et al. (författare)
  • The responses of cloudiness to the direct radiative effect of sulfate and carbonaceous aerosols
  • 2014
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-897X. ; 119:3, s. 1172-1185
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the responses of the direct radiative effect of light absorbing and scattering carbonaceous and sulfate aerosols on cloudiness and associated radiative fluxes using an interactive aerosol-climate model coupled with a slab ocean model. We find that without including the impact of aerosols on cloud microphysics in the model (indirect effect), the direct radiative effect of aerosols alone can cause a change in cloud coverage and thus in cloud flux change which is consistent with several previous studies. More notably, our result indicates that the direct radiative effect of absorbing aerosols can cause changes in both low-level and high-level clouds with opposite signs. As a result, the global mean cloud radiation response to absorbing aerosols has a rather small value. The change of cloud solar radiative response (all-sky effect minus clear-sky effect) at the top of the atmosphere due to the existence of direct radiative effect of scattering, absorbing, and both types of aerosols is 0.72, 0.08, and 0.81Wm(-2), respectively, all are comparable in quantity to the current estimation of aerosol direct radiative forcing. The cloud response due to the longwave radiative effect is 0.09, 0.18, and 0.27Wm(-2), respectively. The global means of the radiative flux and cloud radiative responses appear to be linearly additive; however, this is definitely not the case for the zonal mean or at the regional scale. Key Points The effect of absorbing and scattering aerosols with an aerosol-climate model Cloud responses on the direct radiative are examined Nonlinearity from absorbing and scattering aerosols exists
  •  
4.
  • Namavar, Yasmin, et al. (författare)
  • Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia.
  • 2011
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 134:Pt 1, s. 143-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Pontocerebellar hypoplasia is a group of autosomal recessive neurodegenerative disorders with prenatal onset. The common characteristics are cerebellar hypoplasia with variable atrophy of the cerebellum and the ventral pons. Supratentorial involvement is reflected by variable neocortical atrophy, ventriculomegaly and microcephaly. Mutations in the transfer RNA splicing endonuclease subunit genes (TSEN54, TSEN2, TSEN34) were found to be associated with pontocerebellar hypoplasia types 2 and 4. Mutations in the mitochondrial transfer RNA arginyl synthetase gene (RARS2) were associated with pontocerebellar hypoplasia type 6. We studied a cohort of 169 patients from 141 families for mutations in these genes, of whom 106 patients tested positive for mutations in one of the TSEN genes or the RARS2 gene. In order to delineate the neuroradiological and clinical phenotype of patients with mutations in these genes, we compared this group with 63 patients suspected of pontocerebellar hypoplasia who were negative on mutation analysis. We found a strong correlation (P < 0.0005) between TSEN54 mutations and a dragonfly-like cerebellar pattern on magnetic resonance imaging, in which the cerebellar hemispheres are flat and severely reduced in size and the vermis is relatively spared. Mutations in TSEN54 are clinically associated with dyskinesia and/or dystonia and variable degrees of spasticity, in some cases with pure generalized spasticity. Nonsense or splice site mutations in TSEN54 are associated with a more severe phenotype of more perinatal symptoms, ventilator dependency and early death. In addition, we present ten new mutations in TSEN54, TSEN2 and RARS2. Furthermore, we show that pontocerebellar hypoplasia type 1 together with elevated cerebrospinal fluid lactate may be caused by RARS2 mutations.
  •  
5.
  • Wang, Chien, et al. (författare)
  • Impact of anthropogenic aerosols on Indian summer monsoon
  • 2009
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 36, s. L21704-
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an interactive aerosol-climate model we find that absorbing anthropogenic aerosols, whether coexisting with scattering aerosols or not, can significantly affect the Indian summer monsoon system. We also show that the influence is reflected in a perturbation to the moist static energy in the sub-cloud layer, initiated as a heating by absorbing aerosols to the planetary boundary layer. The perturbation appears mostly over land, extending from just north of the Arabian Sea to northern India along the southern slope of the Tibetan Plateau. As a result, during the summer monsoon season, modeled convective precipitation experiences a clear northward shift, coincidently in general agreement with observed monsoon precipitation changes in recent decades particularly during the onset season. We demonstrate that the sub-cloud layer moist static energy is a useful quantity for determining the impact of aerosols on the northward extent and to a certain degree the strength of monsoon convection. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy