SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bastard Christian) "

Sökning: WFRF:(Bastard Christian)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jardin, Fabrice, et al. (författare)
  • Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma.
  • 2016
  • Ingår i: American Journal of Hematology. - : Wiley. - 0361-8609 .- 1096-8652. ; 91:9, s. 923-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary mediastinal B-cell lymphoma (PMBL) is an entity of B-cell lymphoma distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We investigated the prevalence, specificity, and clinical relevance of mutations of XPO1, which encodes a member of the karyopherin-β nuclear transporters, in a large cohort of PMBL. PMBL cases defined histologically or by gene expression profiling (GEP) were sequenced and the XPO1 mutational status was correlated to genetic and clinical characteristics. The XPO1 mutational status was also assessed in DLBCL, Hodgkin lymphoma (HL) and mediastinal gray-zone lymphoma (MGZL).The biological impact of the mutation on Selective Inhibitor of Nuclear Export (SINE) compounds (KPT-185/330) sensitivity was investigated in vitro. XPO1 mutations were present in 28/117 (24%) PMBL cases and in 5/19 (26%) HL cases but absent/rare in MGZL (0/20) or DLBCL (3/197). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in GEP-defined PMBL and was associated with shorter PFS. Age, International Prognostic Index and bulky mass were similar in XPO1 mutant and wild-type cases. KPT-185 induced a dose-dependent decrease in cell proliferation and increased cell-death in PMBL cell lines harboring wild type or XPO1 E571K mutant alleles. Experiments in transfected U2OS cells further confirmed that the XPO1 E571K mutation does not have a drastic impact on KPT-330 binding. To conclude the XPO1 E571K mutation represents a genetic hallmark of the PMBL subtype and serves as a new relevant PMBL biomarker. SINE compounds appear active for both mutated and wild-type protein. Am. J. Hematol. 91:923-930, 2016. © 2016 Wiley Periodicals, Inc.
  •  
2.
  • Forslund, Sofia K., et al. (författare)
  • Combinatorial, additive and dose-dependent drug–microbiome associations
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 600:7889, s. 500-505
  • Tidskriftsartikel (refereegranskat)abstract
    • During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1–5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug–host–microbiome interactions in cardiometabolic disease.
  •  
3.
  • Manry, Jérémy, et al. (författare)
  • The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies.
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.
  •  
4.
  • Mansouri, Larry, et al. (författare)
  • Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma
  • 2016
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 128:23, s. 2666-2670
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently reported a truncating deletion in the NFKBIE gene, which encodes IκBϵ, a negative feedback regulator of NF-κB, in clinically aggressive chronic lymphocytic leukemia (CLL). Preliminary data indicate enrichment of NFKBIE aberrations in other lymphoid malignancies, hence we screened a large patient cohort (n=1460) diagnosed with different lymphoid neoplasms. While NFKBIE deletions were infrequent in follicular lymphoma, splenic marginal-zone lymphoma, and T-cell acute lymphoblastic leukemia (<2%), slightly higher frequencies were seen in diffuse large B-cell lymphoma, mantle cell lymphoma, and primary CNS lymphoma (3-4%). In contrast, a remarkably high frequency of NFKBIE aberrations (46/203 cases, 22.7%) was observed in primary mediastinal B-cell lymphoma (PMBL) and Hodgkin lymphoma (3/11 cases, 27.3%). NFKBIE-deleted PMBL patients were more often therapy-refractory (P=.022) and displayed inferior outcome compared to wildtype patients (5-year survival: 59% vs. 78%; P=.034); however they appeared to benefit from radiotherapy (P=.022) and rituximab-containing regimens (P=.074). NFKBIEaberrations remained an independent factor in multivariate analysis (P=.003), also when restricting to immunochemotherapy-treated patients (P=.008). Whole-exome sequencing and gene expression-profiling verified the importance of NF-κB deregulation in PMBL. In summary, we identify NFKBIE aberrations as a common genetic event across B-cell malignancies and highlight NFKBIE deletions as a novel poor-prognostic marker in PMBL.
  •  
5.
  • Molinaro, Antonio, et al. (författare)
  • Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy