SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Basu Nandita B.) "

Sökning: WFRF:(Basu Nandita B.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Basu, Nandita B., et al. (författare)
  • Managing nitrogen legacies to accelerate water quality improvement
  • 2022
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15:2, s. 97-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing incidences of eutrophication and groundwater quality impairment from agricultural nitrogen pollution are threatening humans and ecosystem health. Minimal improvements in water quality have been achieved despite billions of dollars invested in conservation measures worldwide. Such apparent failures can be attributed in part to legacy nitrogen that has accumulated over decades of agricultural intensification and that can lead to time lags in water quality improvement. Here, we identify the key knowledge gaps related to landscape nitrogen legacies and propose approaches to manage and improve water quality, given the presence of these legacies.
  •  
2.
  • Dessirier, Benoît, 1987-, et al. (författare)
  • A century of nitrogen dynamics in agricultural watersheds of Denmark
  • 2023
  • Ingår i: Environmental Research Letters. - 1748-9326. ; 18:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Intensive agriculture has been linked to increased nitrogen loads and adverse effects on downstream aquatic ecosystems. Sustained large net nitrogen surpluses have been shown in several contexts to form legacies in soil or waters, which delay the effects of reduction measures. In this study, detailed land use and agricultural statistics were used to reconstruct the annual nitrogen surpluses in three agriculture-dominated watersheds of Denmark (600-2700 km2) with well-drained loamy soils. These surpluses and long-term hydrological records were used as inputs to the process model ELEMeNT to quantify the nitrogen stores and fluxes for 1920-2020. A multi-objective calibration using timeseries of river nitrate loads, as well as other non-conventional data sources, allowed to explore the potential of these different data to constrain the nitrogen cycling model. We found the flux-weighted nitrate concentrations in the root zone percolate below croplands, a dataset not commonly used in calibrating watershed models, to be critical in reducing parameter uncertainty. Groundwater nitrate legacies built up in all three studied watersheds during 1950-1990 corresponding to & SIM;2% of the surplus (or & SIM;1 kg N ha yr-1) before they went down at a similar rate during 1990-2015. Over the same periods active soil nitrogen legacies first accumulated by approximately 10% of the surplus (& SIM;5 kg N ha yr-1), before undergoing a commensurate reduction. Both legacies appear to have been the drivers of hysteresis in the diffuse load at the catchments' outlet and hindrances to reaching water quality goals. Results indicate that the low cropland surpluses enforced during 2008-2015 had a larger impact on the diffuse river loads than the European Union's untargeted grass set-aside policy of 1993-2008. Collectively, the measures of 1990-2015 are estimated to have reset the diffuse load regimes of the watersheds back to the situation prevailing in the 1960s.
  •  
3.
  • Thorslund, Josefin, et al. (författare)
  • Wetlands as large-scale nature-based solutions : Status and challenges for research, engineering and management
  • 2017
  • Ingår i: Ecological Engineering. - : Elsevier BV. - 0925-8574 .- 1872-6992. ; 108, s. 489-497
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. Changes in land-use, water-use and climate can all impact wetland functions and services. These changes occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, engineering and management decisions usually focus on individual wetland projects and local site conditions. Here, we systematically investigate if and to what extent research has addressed the large-scale dynamics of landscape systems with multiple wetlands, hereafter referred to as wetlandscapes, which are likely to be relevant for understanding impacts of regional to global change. Although knowledge in many cases is still limited, evidence suggests that the aggregated effects of multiple wetlands in the landscape can differ considerably from the functions observed at individual wetland scales. This applies to provisioning of ecosystem services such as coastal protection, biodiversity support, groundwater level and soil moisture regulation, flood regulation and contaminant retention. We show that parallel and circular flow-paths, through which wetlands are interconnected in the landscape, may largely control such scale-function differences. We suggest ways forward for addressing the mismatch between the scales at which changes take place and the scale at which observations and implementation are currently made. These suggestions can help bridge gaps between researchers and engineers, which is critical for improving wetland function-effect predictability and management.
  •  
4.
  • Törnqvist, Rebecka, et al. (författare)
  • Mechanisms of Basin-Scale Nitrogen Load Reductions under Intensified Irrigated Agriculture
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Irrigated agriculture can modify the cycling and transport of nitrogen (N), due to associated water diversions, water losses, and changes in transport flow-paths. We investigate dominant processes behind observed long-term changes in dissolved inorganic nitrogen (DIN) concentrations and loads of the extensive (465,000 km(2)) semi-arid Amu Darya River basin (ADRB) in Central Asia. We specifically considered a 40-year period (1960-2000) of large irrigation expansion, reduced river water flows, increased fertilizer application and net increase of N input into the soil-water system. Results showed that observed decreases in riverine DIN concentration near the Aral Sea outlet of ADRB primarily were due to increased recirculation of irrigation water, which extends the flow-path lengths and enhances N attenuation. The observed DIN concentrations matched a developed analytical relation between concentration attenuation and recirculation ratio, showing that a fourfold increase in basin-scale recirculation can increase DIN attenuation from 85 to 99%. Such effects have previously only been observed at small scales, in laboratory experiments and at individual agricultural plots. These results imply that increased recirculation can have contributed to observed increases in N attenuation in agriculturally dominated drainage basins in different parts of the world. Additionally, it can be important for basin scale attenuation of other pollutants, including phosphorous, metals and organic matter. A six-fold lower DIN export from ADRB during the period 1981-2000, compared to the period 1960-1980, was due to the combined result of drastic river flow reduction of almost 70%, and decreased DIN concentrations at the basin outlet. Several arid and semi-arid regions around the world are projected to undergo similar reductions in discharge as the ADRB due to climate change and agricultural intensification, and may therefore undergo comparable shifts in DIN export as shown here for the ADRB. For example, projected future increases of irrigation water withdrawals between 2005 and 2050 may decrease the DIN export from arid world regions by 40%.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy