SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baumann Reinhard R.) "

Sökning: WFRF:(Baumann Reinhard R.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Trong Dinh, Nghia, et al. (författare)
  • High-resolution inkjet printing of conductive carbon nanotube twin lines utilizing evaporation-driven self-assembly
  • 2016
  • Ingår i: Carbon. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0008-6223 .- 1873-3891. ; 96, s. 382-393
  • Tidskriftsartikel (refereegranskat)abstract
    • We report about the inkjet printing of multi-walled carbon nanotubes (MWCNTs) for conductive tracks. The MWCNTs were grown by chemical vapor deposition allowing a defined length and diameter. An inkjet-printable ink formulation was prepared by dispersing the MWCNTs in water. Inkjet-printed high resolution patterns were obtained by printing the prepared ink formulation on silicon wafers utilizing evaporation-driven self-assembly processes. After the deposition of the ink, the solvent evaporation induces material flows within the liquid moving the MWCNTs preferably to the edges of the printed patterns as well as to the print starting position where they assemble. Atomic force microscopy (AFM) reveals a preferential orientation of the deposited MWCNTs. The resulting deposit pattern is well-known as coffee-ring effect which is used here to enable high resolution printing and self-ordering of the MWCNTs. Depending on different print parameters such as drop spacing or substrate temperature, conductive track widths in the range of 5-15 mu m were achieved with a electrical resistivity of about 3.9.10(-3) to 5.6.10(-3) Omega.m measured by current-sensitive AFM. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
2.
  • Belgardt, Christian, et al. (författare)
  • Inkjet printing as a tool for the patterned deposition of octadecylsiloxane monolayers on silicon oxide surfaces
  • 2013
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 15:20, s. 7494-504
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a case study about inkjet printing as a tool for molecular patterning of silicon oxide surfaces with hydrophobic functionality, mediated by n-octadecyltrichlorosilane (OTS) molecules. In contrast to state-of-the-art techniques such as micro contact printing or chemical immersion with subsequent lithography processes, piezo drop-on-demand inkjet printing does not depend on physical masters, which allows an effective direct-write patterning of rigid or flexible substrates and enables short run-lengths of the individual pattern. In this paper, we used mesithylene-based OTS inks, jetted them in droplets of 10 pL on a silicon oxide surface, evaluated the water contact angle of the patterned areas and fitted the results with Cassie's law. For inks of 2.0 mM OTS concentration, we found that effective area coverages of 38% can be obtained. Our results hence show that contact times of the order of hundred milliseconds are sufficient to form a pattern of regions with OTS molecules adsorbed to the surface, representing at least a fragmented, inhomogeneous self-assembled OTS monolayer (OTS-SAM).
  •  
3.
  • Blaudeck, Thomas, et al. (författare)
  • Simplified Large-Area Manufacturing of Organic Electrochemical Transistors Combining Printing and a Self-Aligning Laser Ablation Step
  • 2012
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlag Berlin. - 1616-301X .- 1616-3028. ; 22:14, s. 2939-2948
  • Tidskriftsartikel (refereegranskat)abstract
    • A hybrid manufacturing approach for organic electrochemical transistors (OECTs) on flexible substrates is reported. The technology is based on conventional and digital printing (screen and inkjet printing), laser processing, and post-press technologies. A careful selection of the conductive, dielectric, and semiconductor materials with respect to their optical properties enables a self-aligning pattern formation which results in a significant reduction of the usual registration problems during manufacturing. For the prototype OECTs, based on this technology, on/off ratios up to 600 and switching times of 100 milliseconds at gate voltages in the range of 1 V were obtained.
  •  
4.
  • Breznau, Nate, et al. (författare)
  • Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:44
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores how researchers analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each teams workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy