SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Baumgartner Bernhard) "

Search: WFRF:(Baumgartner Bernhard)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gattinger, Pia, et al. (author)
  • Vaccine based on folded RBD-PreS fusion protein with potential to induce sterilizing immunity to SARS-CoV-2 variants
  • 2022
  • In: Allergy. European Journal of Allergy and Clinical Immunology. - : Wiley. - 0105-4538 .- 1398-9995. ; 77:8, s. 2431-2445
  • Journal article (peer-reviewed)abstract
    • Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in.Methods: We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other.Results: PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects.Conclusion: The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.
  •  
2.
  • Koeckerling, D., et al. (author)
  • Endovascular revascularization strategies for aortoiliac and femoropopliteal artery disease: a meta-analysis
  • 2023
  • In: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 44:11, s. 935-950
  • Journal article (peer-reviewed)abstract
    • Aims Optimal endovascular management of intermittent claudication (IC) remains disputed. This systematic review and meta-analysis compares efficacy and safety outcomes for balloon angioplasty (BA), bare-metal stents (BMS), drug-coated balloons (DCB), drug-eluting stents (DES), covered stents, and atherectomy. Methods and results Electronic databases were searched for randomized, controlled trials (RCT) from inception through November 2021. Efficacy outcomes were primary patency, target-lesion revascularization (TLR), and quality-of-life (QoL). Safety endpoints were all-cause mortality and major amputation. Outcomes were evaluated at short-term (<1 year), mid-term (1-2 years), and long-term (>= 2 years) follow-up. The study was registered on PROSPERO (CRD42021292639). Fifty-one RCTs enrolling 8430 patients/lesions were included. In femoropopliteal disease of low-to-intermediate complexity, DCBs were associated with higher likelihood of primary patency [short-term: odds ratio (OR) 3.21, 95% confidence interval (CI) 2.44-4.24; long-term: OR 2.47, 95% CI 1.93-3.16], lower TLR (short-term: OR 0.33, 95% CI 0.22-0.49; long-term: OR 0.42, 95% CI 0.29-0.60) and similar all-cause mortality risk, compared with BA. Primary stenting using BMS was associated with improved short-to-mid-term patency and TLR, but similar long-term efficacy compared with provisional stenting. Mid-term patency (OR 1.64, 95% CI 0.89-3.03) and TLR (OR 0.50, 95% CI 0.22-1.11) estimates were comparable for DES vs. BMS. Atherectomy, used independently or adjunctively, was not associated with efficacy benefits compared with drug-coated and uncoated angioplasty, or stenting approaches. Paucity and heterogeneity of data precluded pooled analysis for aortoiliac disease and QoL endpoints. Conclusion Certain devices may provide benefits in femoropopliteal disease, but comparative data in aortoiliac arteries is lacking. Gaps in evidence quantity and quality impede identification of the optimal endovascular approach to IC.
  •  
3.
  • Lehtipalo, Katrianne, et al. (author)
  • Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
  • 2018
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 4:12
  • Journal article (peer-reviewed)abstract
    • A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOx suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view