SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beauvais L) "

Sökning: WFRF:(Beauvais L)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Nordström, Ulrika, et al. (författare)
  • Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson's disease.
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 73, s. 70-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Current research on Parkinson's disease (PD) pathogenesis requires relevant animal models that mimic the gradual and progressive development of neuronal dysfunction and degeneration that characterizes the disease. Polymorphisms in engrailed 1 (En1), a homeobox transcription factor that is crucial for both the development and survival of mesencephalic dopaminergic neurons, are associated with sporadic PD. This suggests that En1 mutant mice might be a promising candidate PD model. Indeed, a mouse that lacks one En1 allele exhibits decreased mitochondrial complex I activity and progressive midbrain dopamine neuron degeneration in adulthood, both features associated with PD. We aimed to further characterize the disease-like phenotype of these En1(+/-) mice with a focus on early neurodegenerative changes that can be utilized to score efficacy of future disease modifying studies. We observed early terminal defects in the dopaminergic nigrostriatal pathway in En1(+/-) mice. Several weeks before a significant loss of dopaminergic neurons in the substantia nigra could be detected, we found that striatal terminals expressing high levels of dopaminergic neuron markers TH, VMAT2, and DAT were dystrophic and swollen. Using transmission electron microscopy, we identified electron dense bodies consistent with abnormal autophagic vacuoles in these terminal swellings. In line with these findings, we detected an up-regulation of the mTOR pathway, concurrent with a downregulation of the autophagic marker LC3B, in ventral midbrain and nigral dopaminergic neurons of the En1(+/-) mice. This supports the notion that autophagic protein degradation is reduced in the absence of one En1 allele. We imaged the nigrostriatal pathway using the CLARITY technique and observed many fragmented axons in the medial forebrain bundle of the En1(+/-) mice, consistent with axonal maintenance failure. Using in vivo electrochemistry, we found that nigrostriatal terminals in the dorsal striatum were severely deficient in dopamine release and reuptake. Our findings support a progressive retrograde degeneration of En1(+/-) nigrostriatal neurons, akin to what is suggested to occur in PD. We suggest that using the En1(+/-) mice as a model will provide further key insights into PD pathogenesis, and propose that axon terminal integrity and function can be utilized to estimate dopaminergic neuron health and efficacy of experimental PD therapies.
  •  
5.
  • Simons, Matthew C., et al. (författare)
  • Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal–Organic Framework
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 141:45, s. 18142-18151
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal organic frameworks (MOFs), with their crystalline, porous structures, can be synthesized to incorporate a wide range of catalytically active metals in tailored surroundings. These materials have potential as catalysts for conversion of light alkanes, feedstocks available in large quantities from shale gas that are changing the economics of manufacturing commodity chemicals. Mononuclear high-spin (S = 2) Fe(II) sites situated in the nodes of the MOF MIL-100(Fe) convert propane via dehydrogenation, hydroxylation, and overoxidation pathways in reactions with the atomic oxidant N2O. Pair distribution function analysis, N-2 adsorption isotherms, X-ray diffraction patterns, and infrared and Raman spectra confirm the single-phase crystallinity and stability of MIL-100(Fe) under reaction conditions (523 K in vacuo, 378-408 K C3H8 + N2O). Density functional theory (DFT) calculations illustrate a reaction mechanism for the formation of 2-propanol, propylene, and 1-propanol involving the oxidation of Fe(II) to Fe(III) via a high-spin Fe(IV)=O intermediate. The speciation of Fe(II) and Fe(III) in the nodes and their dynamic interchange was characterized by in situ X-ray absorption spectroscopy and ex situ Mossbauer spectroscopy. The catalytic relevance of Fe(II) sites and the number of such sites were determined using in situ chemical titrations with NO. N-2 and C3H6 production rates were found to be first-order in N2O partial pressure and zero-order in C3H8 partial pressure, consistent with DFT calculations that predict the reaction of Fe(II) with N2O to be rate determining. DFT calculations using a broken symmetry method show that Fe-trimer nodes affecting reaction contain antiferromagnetically coupled iron species, and highlight the importance of stabilizing high-spin (S = 2) Fe(II) species for effecting alkane oxidation at low temperatures (<408 K).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy