SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Becher Jana) "

Sökning: WFRF:(Becher Jana)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altgärde, Noomi, 1983, et al. (författare)
  • Immobilization of chondroitin sulfate to lipid membranes and its interactions with ECM proteins
  • 2013
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 390:1, s. 528-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycosaminoglycans (GAGs) in the extracellular matrix (ECM) have multiple functions in tissues including providing support, mediating cell division and differentiation, and taking part in important interactions with proteins, e.g. growth factors. Studying GAG related interactions is inherently difficult and requires suit- able interaction platforms. We show two strategies to covalently couple the GAG chondroitin sulfate (CS) to supported lipid bilayers (SLBs), either by (a) activating carboxy-functionalized phospholipids in the lipid bilayer, followed by the addition of hydrazide-functionalized CS, or by (b) activating naturally occurring carboxyl groups on CS prior to addition to an amino-functionalized SLB. Bilayer formation and subsequent immobilization was followed in real-time using the Quartz Crystal Microbalance with Dissipation monitor- ing, a technique that provides unique information when studying highly hydrated molecular films. The two strategies yielded thin CS films (in the nanometer range) with similar viscoelastic properties. Fluidity of the lipid bilayer was retained when CS was coupled. The application of the CS interaction platform was exemplified for type I collagen and the bone inducing growth factor bone morphogenetic protein-2 (BMP-2). The addition of collagen to immoblized CS resulted in soft layers whereas layers formed by addition of BMP-2 were denser, independent on the immobilization strategy used.
  •  
2.
  • Altgärde, Noomi, 1983, et al. (författare)
  • Probing the biofunctionality of biotinylated hyaluronan and chondroitin sulfate by hyaluronidase degradation and aggrecan interaction
  • 2013
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 9:9, s. 8158-8166
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular interactions involving glycosaminoglycans (GAGs) are important for biological processes in the extracellular matrix (ECM) and at cell surfaces, and also in biotechnological applications. Enzymes in the ECM constantly modulate the molecular structure and the amount of GAGs in our tissues. Specifically, the changeable sulfation patterns of many GAGs are expected to be important in interactions with proteins. Biotinylation is a convenient method for immobilizing molecules to surfaces. When studying interactions at the molecular, cell and tissue level, the native properties of the immobilized molecule, i.e. its biofunctionality, need to be retained upon immobilization. Here, the GAGs hyaluronan (HA) and chondroitin sulfate (CS), and synthetically sulfated derivatives of the two, were immobilized using biotin-streptavidin binding. The degree of biotinylation and the placement of biotin groups (end-on/side-on) were varied. The introduction of biotin groups could have unwanted effects on the studied molecule, but this aspect that is not always straightforward to evaluate. Hyaluronidase, an enzyme that degrades HA and CS in the ECM, was investigated as a probe to evaluate the biofunctionality of the immobilized GAGs, using both quartz crystal microbalance and high-performance liquid chromatography. Our results showed that end-on biotinylated HA was efficiently degraded by hyaluronidase, whereas already a low degree of side-on biotinylation destroyed the degrading ability of the enzyme. Synthetically introduced sulfate groups also had this effect. Hence hyaluronidase degradation is a cheap and easy way to investigate how molecular function is influenced by the introduced functional groups. Binding experiments with the proteoglycan aggrecan emphasized the influence of protein size and surface orientation of the GAGs for in-depth studies of GAG behavior.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy