SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bedoya D.) "

Sökning: WFRF:(Bedoya D.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Bedoya, D., et al. (författare)
  • Even violins can cry : Specifically vocal emotional behaviours also drive the perception of emotions in non-vocal music
  • 2021
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 376:1840
  • Tidskriftsartikel (refereegranskat)abstract
    • A wealth of theoretical and empirical arguments have suggested that music triggers emotional responses by resembling the inflections of expressive vocalizations, but have done so using low-level acoustic parameters (pitch, loudness, speed) that, in fact, may not be processed by the listener in reference to human voice. Here, we take the opportunity of the recent availability of computational models that allow the simulation of three specifically vocal emotional behaviours: smiling, vocal tremor and vocal roughness. When applied to musical material, we find that these three acoustic manipulations trigger emotional perceptions that are remarkably similar to those observed on speech and scream sounds, and identical across musician and non-musician listeners. Strikingly, this not only applied to singing voice with and without musical background, but also to purely instrumental material. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part I)'.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Zalakeviciute, R., et al. (författare)
  • Gradient boosting machine to assess the public protest impact on urban air quality
  • 2021
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 11:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Political and economic protests build-up due to the financial uncertainty and inequality spreading throughout the world. In 2019, Latin America took the main stage in a wave of protests. While the social side of protests is widely explored, the focus of this study is the evolution of gaseous urban air pollutants during and after one of these events. Changes in concentrations of NO2, CO, O3 and SO2 during and after the strike, were studied in Quito, Ecuador using two approaches: (i) inter-period observational analysis; and (ii) machine learning (ML) gradient boosting machine (GBM) developed business-as-usual (BAU) comparison to the observations. During the strike, both methods showed a large reduction in the concentrations of NO2 (31.5–32.36%) and CO (15.55–19.85%) and a slight reduction for O3 and SO2. The GBM approach showed an exclusive potential, especially for a lengthier period of predictions, to estimate strike impact on air quality even after the strike was over. This advocates for the use of machine learning techniques to estimate an extended effect of changes in human activities on urban gaseous pollution. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
9.
  • Zalakeviciute, R., et al. (författare)
  • War Impact on Air Quality in Ukraine
  • 2022
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 14:21
  • Tidskriftsartikel (refereegranskat)abstract
    • In the light of the 21st century, after two devastating world wars, humanity still has not learned to solve their conflicts through peaceful negotiations and dialogue. Armed conflicts, both international and within a single state, still cause devastation, displacement, and death all over the world. Not to mention the consequences that war has on the environment. Due to a lack of published research about war impact on modern air quality, this work studies air pollution evolution during the first months of the Russian-Ukrainian conflict. Satellite images of NO2, CO, O3, SO2, and PM2.5 over Ukrainian territory and PM2.5 land monitoring data for Kyiv were analyzed. The results showed that NO2 and PM2.5 correlated the most with war activities. CO and O3 levels increased, while SO2 concentrations reduced four-fold as war intensified. Drastic increases in pollution (especially PM2.5) from bombing and structural fires, raise additional health concerns, which might have serious implications for the exposed local and regional populations. This study is an invaluable proof of the impact any armed conflict has on air quality, the population, and environment. © 2022 by the authors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy