SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bekkevold Dorte) "

Sökning: WFRF:(Bekkevold Dorte)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Leif, et al. (författare)
  • How Fish Population Genomics Can Promote Sustainable Fisheries : A Road Map
  • 2024
  • Ingår i: Annual Review of Animal Biosciences. - : ANNUAL REVIEWS. - 2165-8102 .- 2165-8110. ; 12, s. 1-20
  • Forskningsöversikt (refereegranskat)abstract
    • Maintenance of genetic diversity in marine fishes targeted by commercial fishing is a grand challenge for the future. Most of these species are abundant and therefore important for marine ecosystems and food security. Here, we present a road map of how population genomics can promote sustainable fisheries. In these species, the development of reference genomes and whole genome sequencing is key, because genetic differentiation at neutral loci is usually low due to large population sizes and gene flow. First, baseline allele frequencies representing genetically differentiated populations within species must be established. These can then be used to accurately determine the composition of mixed samples, forming the basis for population demographic analysis to inform sustainably set fish quotas. SNP-chip analysis is a cost-effective method for determining baseline allele frequencies and for population identification in mixed samples. Finally, we describe how genetic marker analysis can transform stock identification and management.
  •  
2.
  • Bekkevold, Dorte, et al. (författare)
  • Mixed-stock analysis of Atlantic herring (Clupea harengus) : a tool for identifying management units and complex migration dynamics
  • 2023
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press. - 1054-3139 .- 1095-9289. ; 80:1, s. 173-184
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed and validated a mixed-stock analysis (MSA) method with 59 single-nucleotide polymorphisms selected from genome-wide data to assign individuals to populations in mixed-stock samples of Atlantic herring from the North and Baltic seas. We analysed 3734 herring from spawning locations and scientific catches of mixed feeding stocks to demonstrate a "one-fits-all" tool with unprecedented accuracy for monitoring spatio-temporal dynamics throughout a large geographical range with complex stock mixing. We re-analysed time-series data (2002-2021) and compared inferences about stock composition with estimates from morphological data. We show that contributions from the western Baltic spring-spawning stock complex, which is under management concern, have likely been overestimated. We also show that a genetically distinctive population of western Baltic autumn spawners, ascribed low fisheries importance, contributes non-negligible and potentially temporally increasing proportions to mixed-stock aggregations, calling for a re-evaluation of stock definitions. MSA data can be implemented in stock assessment and in a variety of applications, including marine ecosystem description, impact assessment of specific fleets, and stock-rebuilding plans.
  •  
3.
  • Farrell, Edward D. D., et al. (författare)
  • A baseline for the genetic stock identification of Atlantic herring, Clupea harengus, in ICES Divisions 6.a, 7.b-c
  • 2022
  • Ingår i: Royal Society Open Science. - : The Royal Society. - 2054-5703. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Atlantic herring in International Council for Exploration of the Sea (ICES) Divisions 6.a, 7.b-c comprises at least three populations, distinguished by temporal and spatial differences in spawning, which have until recently been managed as two stocks defined by geographical delineators. Outside of spawning the populations form mixed aggregations, which are the subject of acoustic surveys. The inability to distinguish the populations has prevented the development of separate survey indices and separate stock assessments. A panel of 45 single-nucleotide polymorphisms, derived from whole-genome sequencing, were used to genotype 3480 baseline spawning samples (2014-2021). A temporally stable baseline comprising 2316 herring from populations known to inhabit Division 6.a was used to develop a genetic assignment method, with a self-assignment accuracy greater than 90%. The long-term temporal stability of the assignment model was validated by assigning archive (2003-2004) baseline samples (270 individuals) with a high level of accuracy. Assignment of non-baseline samples (1514 individuals) from Divisions 6.a, 7.b-c indicated previously unrecognized levels of mixing of populations outside of the spawning season. The genetic markers and assignment models presented constitute a 'toolbox' that can be used for the assignment of herring caught in mixed survey and commercial catches in Division 6.a into their population of origin with a high level of accuracy.
  •  
4.
  • Han, Fan, et al. (författare)
  • Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci
  • 2020
  • Ingår i: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Atlantic herring is widespread in North Atlantic and adjacent waters and is one of the most abundant vertebrates on earth. This species is well suited to explore genetic adaptation due to minute genetic differentiation at selectively neutral loci. Here, we report hundreds of loci underlying ecological adaptation to different geographic areas and spawning conditions. Four of these represent megabase inversions confirmed by long read sequencing. The genetic architecture underlying ecological adaptation in herring deviates from expectation under a classical infinitesimal model for complex traits because of large shifts in allele frequencies at hundreds of loci under selection.
  •  
5.
  • Hill, Jason, et al. (författare)
  • Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:37, s. 18473-18478
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolutionary process that occurs when a species colonizes a new environment provides an opportunity to explore the mechanisms underlying genetic adaptation, which is essential knowledge for understanding evolution and the maintenance of biodiversity. Atlantic herring has an estimated total breeding stock of about 1 trillion (10(12)) and has colonized the brackish Baltic Sea within the last 10,000 y. Minute genetic differentiation between Atlantic and Baltic herring populations at selectively neutral loci combined with this rapid adaptation to a new environment facilitated the identification of hundreds of loci underlying ecological adaptation. A major question in the field of evolutionary biology is to what extent such an adaptive process involves selection of novel mutations with large effects or genetic changes at many loci, each with a small effect on phenotype (i.e., selection on standing genetic variation). Here we show that a missense mutation in rhodopsin (Phe261Tyr) is an adaptation to the red-shifted Baltic Sea light environment. The transition from phenylalanine to tyrosine differs only by the presence of a hydroxyl moiety in the latter, but this results in an up to 10-nm red-shifted light absorbance of the receptor. Remarkably, an examination of the rhodopsin sequences from 2,056 species of fish revealed that the same missense mutation has occurred independently and been selected for during at least 20 transitions between light environments across all fish. Our results provide a spectacular example of convergent evolution and how a single amino acid change can have a major effect on ecological adaptation.
  •  
6.
  • Sunde, Johanna, et al. (författare)
  • Drivers of neutral and adaptive differentiation in pike (Esox lucius) populations from contrasting environments
  • 2022
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 31:4, s. 1093-1110
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding how eco-evolutionary processes and environmental factors drive population differentiation and adaptation are key challenges in evolutionary biology of relevance for biodiversity protection. Differentiation requires at least partial reproductive separation, which may result from different modes of isolation such as geographic isolation (allopatry) or isolation by distance (IBD), resistance (IBR), and environment (IBE). Despite that multiple modes might jointly influence differentiation, studies that compare the relative contributions are scarce. Using RADseq, we analyse neutral and adaptive genetic diversity and structure in 11 pike (Esox lucius) populations from contrasting environments along a latitudinal gradient (54.9-63.6 degrees N), to investigate the relative effects of IBD, IBE and IBR, and to assess whether the effects differ between neutral and adaptive variation, or across structural levels. Patterns of neutral and adaptive variation differed, probably reflecting that they have been differently affected by stochastic and deterministic processes. The importance of the different modes of isolation differed between neutral and adaptive diversity, yet were consistent across structural levels. Neutral variation was influenced by interactions among all three modes of isolation, with IBR (seascape features) playing a central role, wheares adaptive variation was mainly influenced by IBE (environmental conditions). Taken together, this and previous studies suggest that it is common that multiple modes of isolation interactively shape patterns of genetic variation, and that their relative contributions differ among systems. To enable identification of general patterns and understand how various factors influence the relative contributions, it is important that several modes are simultaneously investigated in additional populations, species and environmental settings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy