SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beko G.) "

Sökning: WFRF:(Beko G.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Langer, S., et al. (författare)
  • Organophosphate esters in dust samples collected from Danish homes and daycare centers
  • 2016
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535. ; 154, s. 559-566
  • Tidskriftsartikel (refereegranskat)abstract
    • Organophosphates are used in a wide range of materials and consumer products and are ubiquitous in indoor environments. Certain organophosphates have been associated with various adverse health effects. The present paper reports mass fractions of organophosphates in dust samples collected from 500 bedrooms and 151 daycare centers of children living in Odense, Denmark. The identified compounds include: tris(isobutyl) phosphate (TIBP), tri-n-butyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), tris(1,3-dichloroisopropyl) phosphate (TDCIPP), tris(2-butoxyethyl) phosphate (TBOEP), triphenylphosphate (TPHP), 2-ethylhexyl-diphenyl phosphate (EHDPP), tris(2-ethylhexyl) phosphate (TEHP) and tris(methylphenyl) phosphate (TMPP). Both the number of organophosphates with median values above the limit of detection and the median values were higher for samples from daycare centers than for samples from homes. Organophosphates with median mass fractions above the limit of detection were: TCEP from homes (6.9 mu g g(-1)), and TCEP (16 mu g g(-1)), TCIPP (5.6 mu g g(-1)), TDCIPP (7.1 mu g g(-1)), TBOEP (26 mu g g(-1)), TPHP (2.0 mu g g(-1)) and EHDPP (2.1 mu g g(-1)) from daycare centers. When present, TBOEP was typically the most abundant of the identified OPs. The sum of the organophosphate dust mass fractions measured in this study was roughly in the mid-range of summed mass fractions reported for dust samples collected in other countries. On a global scale, the geographical distribution of organophosphates in indoor dust is quite variable, with higher concentrations in industrialized countries. This trend differs from that for phthalate esters, whose geographic distribution is more homogeneous. Exposure to organophosphates via dust ingestion is relatively low, although there is considerable uncertainly in this assessment. (C) 2016 Elsevier Ltd. All rights reserved.
  •  
4.
  •  
5.
  • Beko, G., et al. (författare)
  • The Indoor Chemical Human Emissions and Reactivity (ICHEAR) project: Overview of experimental methodology and preliminary results
  • 2020
  • Ingår i: Indoor Air. - : Hindawi Limited. - 1600-0668 .- 0905-6947. ; 30:6, s. 1213-1228
  • Tidskriftsartikel (refereegranskat)abstract
    • With the gradual reduction of emissions from building products, emissions from human occupants become more dominant indoors. The impact of human emissions on indoor air quality is inadequately understood. The aim of the Indoor Chemical Human Emissions and Reactivity (ICHEAR) project was to examine the impact on indoor air chemistry of whole-body, exhaled, and dermally emitted human bioeffluents under different conditions comprising human factors (t-shirts/shorts vs long-sleeve shirts/pants; age: teenagers, young adults, and seniors) and a variety of environmental factors (moderate vs high air temperature; low vs high relative humidity; presence vs absence of ozone). A series of human subject experiments were performed in a well-controlled stainless steel climate chamber. State-of-the-art measurement technologies were used to quantify the volatile organic compounds emitted by humans and their total OH reactivity; ammonia, nanoparticle, fluorescent biological aerosol particle (FBAP), and microbial emissions; and skin surface chemistry. This paper presents the design of the project, its methodologies, and preliminary results, comparing identical measurements performed with five groups, each composed of 4 volunteers (2 males and 2 females). The volunteers wore identical laundered new clothes and were asked to use the same set of fragrance-free personal care products. They occupied the ozone-free (<2 ppb) chamber for 3 hours (morning) and then left for a 10-min lunch break. Ozone (target concentration in occupied chamber ~35 ppb) was introduced 10 minutes after the volunteers returned to the chamber, and the measurements continued for another 2.5 hours. Under a given ozone condition, relatively small differences were observed in the steady-state concentrations of geranyl acetone, 6MHO, and 4OPA between the five groups. Larger variability was observed for acetone and isoprene. The absence or presence of ozone significantly influenced the steady-state concentrations of acetone, geranyl acetone, 6MHO, and 4OPA. Results of replicate experiments demonstrate the robustness of the experiments. Higher repeatability was achieved for dermally emitted compounds and their reaction products than for constituents of exhaled breath.
  •  
6.
  •  
7.
  • Langer, Sarka, 1960, et al. (författare)
  • Indoor air quality in passive and conventional new houses in Sweden
  • 2015
  • Ingår i: Building and Environment. - : Elsevier BV. - 0360-1323 .- 1873-684X. ; 93:P1, s. 92-100
  • Tidskriftsartikel (refereegranskat)abstract
    • The indoor environment was evaluated in 20 new passive houses and 21 new conventionally built houses during the 2012/2013 and 2013/2014 heating seasons. Temperature, relative humidity (RH), the concentrations of NO2, ozone, formaldehyde, volatile organic compounds (VOC) and viable microbiological flora were measured. Air exchange rates (AER) were estimated from the CO2 concentrations measured in the bedrooms. The median AER was slightly higher in the passive houses than in the conventional ones (0.68 h-1 vs. 0.60 h-1). The median concentrations in the passive and the conventional buildings were 10 and 12μg/m3 for NO2, 9.7 and 11 μg/m3 for ozone, 11 and 16μg/m3 for formaldehyde, and 270 and 150 μg/m3 for TVOC, respectively. Significant differences in the TVOC and formaldehyde concentrations between the two groups of buildings indicated substantial sources of TVOC present in the passive houses, while sources of formaldehyde may have been more pronounced in the conventional houses. In contrast to the passive houses, the indoor microbiological flora indicated possible mould or moisture problems in six (29%) of the conventionally built houses. When compared with the results previously reported for the Swedish housing stock, AERs and NO2 concentrations were significantly higher in both groups of newly built buildings, while formaldehyde concentrations were significantly lower in the passive houses. TVOC concentrations were not significantly different from those reported for the housing stock, although the most abundant individual VOCs were present mostly at higher concentrations in the new buildings.
  •  
8.
  • Langer, Sarka, 1960, et al. (författare)
  • Squalene Depletion in Skin Following Human Exposure to Ozone under Controlled Chamber Conditions
  • 2024
  • Ingår i: Environmental Science & Technology. - 0013-936X .- 1520-5851. ; 58:15, s. 6693-6703
  • Tidskriftsartikel (refereegranskat)abstract
    • A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants’ age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.
  •  
9.
  • Martinez-Hermosilla, G. A., et al. (författare)
  • Relative permeability of barrier dispersion coatings applied on paper-based materials mathematical modeling and experimental validation : Mathematical modeling and experimental validation
  • 2022
  • Ingår i: JCT Research. - : Springer. - 1547-0091 .- 2168-8028. ; 19:2, s. 543-558
  • Tidskriftsartikel (refereegranskat)abstract
    • Barrier dispersion coatings have been used to improve barrier properties of paper-based materials. Like other technologies such as thermoplastic composites, dispersion coatings include fillers to create obstacles that complicate the pathways for permeants through coatings. The development of these technologies has received significant attention where even predictive barrier performance models have been created. However, to the best of our knowledge, none of them are applicable to barrier dispersion coatings. This research proposed a mathematical model to predict the relative permeability of barrier dispersion coatings applied on paper-based materials based on Fick’s law. The uncertainty of the barrier properties due to variation in filler orientation and spatial location was included through Monte Carlo simulation. Model validation against four models previously published by other authors, and water vapor transmission rate measured on three coating formations and two coating thicknesses was also conducted. The model predictions and experimental results showed that the increase in the amount of fillers reduces the relative permeability, and this reduction can be higher if the size of the fillers is larger. The predictions agreed with experimental results particularly at volume fractions below 10%. In most of the cases, the proposed model achieved better prediction in comparison with those already published. The model is useful to predict relative barrier performance of different coating formulations and can be used as a tool for future developments.
  •  
10.
  • Salvador, Christian Mark, 1989, et al. (författare)
  • Indoor ozone/human chemistry and ventilation strategies
  • 2019
  • Ingår i: Indoor Air. - : Hindawi Limited. - 1600-0668 .- 0905-6947. ; 29:6, s. 913-925
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to better understand and quantify the influence of ventilation strategies on occupant-related indoor air chemistry. The oxidation of human skin oil constituents was studied in a continuously ventilated climate chamber at two air exchange rates (1 h-1 and 3 h-1 ) and two initial ozone mixing ratios (30 and 60 ppb). Additional measurements were performed to investigate the effect of intermittent ventilation ("off" followed by "on"). Soiled t-shirts were used to simulate the presence of occupants. A time-of-flight-chemical ionization mass spectrometer (ToF-CIMS) in positive mode using protonated water clusters was used to measure the oxygenated reaction products geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA). The measurement data were used in a series of mass balance models accounting for formation and removal processes. Reactions of ozone with squalene occurring on the surface of the t-shirts are mass transport limited; ventilation rate has only a small effect on this surface chemistry. Ozone-squalene reactions on the t-shirts produced gas-phase geranyl acetone, which was subsequently removed almost equally by ventilation and further reaction with ozone. About 70% of gas-phase 6-MHO was produced in surface reactions on the t-shirts, the remainder in secondary gas-phase reactions of ozone with geranyl acetone. 6-MHO was primarily removed by ventilation, while further reaction with ozone was responsible for about a third of its removal. 4-OPA was formed primarily on the surfaces of the shirts (~60%); gas-phase reactions of ozone with geranyl acetone and 6-MHO accounted for ~30% and ~10%, respectively. 4-OPA was removed entirely by ventilation. The results from the intermittent ventilation scenarios showed delayed formation of the reaction products and lower product concentrations compared to continuous ventilation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy