SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bellman Jakob) "

Sökning: WFRF:(Bellman Jakob)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anesten, Fredrik, et al. (författare)
  • Glucagon-Like Peptide-1-, but not Growth and Differentiation Factor 15-, Receptor Activation Increases the Number of Interleukin-6-Expressing Cells in the External Lateral Parabrachial Nucleus
  • 2019
  • Ingår i: Neuroendocrinology. - : S. Karger AG. - 0028-3835 .- 1423-0194. ; 109:4, s. 310-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-6 in the hypothalamus and hindbrain is an important downstream mediator of suppression of body weight and food intake by glucagon-like peptide-1 (GLP-1) receptor stimulation. CNS GLP-1 is produced almost exclusively in prepro-glucagon neurons in the nucleus of the solitary tract. These neurons innervate energy balance-regulating areas, such as the external lateral parabrachial nucleus (PBNel); essential for induction of anorexia. Using a validated novel IL-6-reporter mouse strain, we investigated the interactions in PBNel between GLP-1, IL-6, and calcitonin gene-related peptide (CGRP, a well-known mediator of anorexia). We show that PBNel GLP-1R-containing cells highly (to about 80%) overlap with IL-6-containing cells on both protein and mRNA level. Intraperitoneal administration of a GLP-1 analogue exendin-4 to mice increased the proportion of IL-6-containing cells in PBNel 3-fold, while there was no effect in the rest of the lateral parabrachial nucleus. In contrast, injections of an anorexigenic peptide growth and differentiation factor 15 (GDF15) markedly increased the proportion of CGRP-containing cells, while IL-6-containing cells were not affected. In summary, GLP-1R are found on IL-6-producing cells in PBNel, and GLP-1R stimulation leads to an increase in the proportion of cells with IL-6-reporter fluorescence, supporting IL-6 mediation of GLP-1 effects on energy balance.
  •  
2.
  • Bellman, Jakob, et al. (författare)
  • Loading enhances glucose uptake in muscles, bones, and bone marrow of lower extremities in humans.
  • 2024
  • Ingår i: The Journal of clinical endocrinology and metabolism. - 1945-7197.
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased standing time has been associated with improved health, but the underlying mechanism is unclear.We herein investigate if increased weight loading increases energy demand and thereby glucose uptake (GU) locally in bone and/or muscle in the lower extremities.In this single-center clinical trial with randomized crossover design (ClinicalTrials.gov ID, NCT05443620), we enrolled 10 men with body mass index (BMI) between 30 and 35kg/m2. Participants were treated with both high load (standing with weight vest weighing 11% of body weight) and no load (sitting) on the lower extremities. GU was measured using whole-body quantitative positron emission tomography/computed tomography (PET/CT) imaging. The primary endpoint was the change in GU ratio between loaded bones (i.e. femur and tibia) and non-loaded bones (i.e. humerus).High load increased the GU ratio between lower and upper extremities in cortical diaphyseal bone (e.g. femur/humerus ratio increased by 19%, p=0.029), muscles (e.g. m. quadriceps femoris/m. triceps brachii ratio increased by 28%, p=0.014) and in certain bone marrow regions (femur/humerus diaphyseal bone marrow region ratio increased by 17%, p=0.041). Unexpectedly, we observed the highest GU in the bone marrow region of vertebral bodies, but its GU was not affected by high load.Increased weight-bearing loading enhances GU in muscles, cortical bone, and bone marrow of the exposed lower extremities. This could be interpreted as increased local energy demand in bone and muscle caused by increased loading. The physiological importance of the increased local GU by static loading remains to be determined.
  •  
3.
  • Hägg, Daniel, 1974, et al. (författare)
  • Osteoblast-lineage cells regulate metabolism and fat mass
  • 2023
  • Ingår i: Current Opinion in Endocrine and Metabolic Research. - 2451-9650. ; 31
  • Forskningsöversikt (refereegranskat)abstract
    • As energy depots in many circumstances have been limited during evolution, it is necessary to prioritize how to manage energy resources. In this review we summarize data from the last 15 years indicating that osteoblast-lineage cells are regulators of whole-body energy metabolism and fat mass. We focus mainly on three factors, osteocalcin, lipocalin-2 and sclerostin, that are released by osteoblast-lineage cells and proposed to exert endocrine effects on metabolism. In addition, we present a hypothesis on why osteoblast-lineage cells during evolution have developed a function to regulate metabolism and fat mass. We propose that osteoblast-lineage cells through the osteocyte network in bone are sensors of gravitational forces induced by body mass and gravity on land-living species. By sensing the body weight, the osteoblastlineage cells may then feed-back this information on the whole-body nutritional status via osteoblast-derived endocrine factors or via the nervous system to regulate energy metabolism and fat mass.
  •  
4.
  • Jansson, John-Olov, 1954, et al. (författare)
  • A Body Weight Sensor Regulates Prepubertal Growth via the Somatotropic Axis in Male Rats
  • 2021
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 162:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In healthy conditions, prepubertal growth follows an individual specific growth channel. Growth hormone (GH) is undoubtedly the major regulator of growth. However, the homeostatic regulation to maintain the individual specific growth channel during growth is unclear. We recently hypothesized a body weight sensing homeostatic regulation of body weight during adulthood, the gravitostat. We now investigated if sensing of body weight also contributes to the strict homeostatic regulation to maintain the individual specific growth channel during prepubertal growth. To evaluate the effect of increased artificial loading on prepubertal growth, we implanted heavy (20% of body weight) or light (2% of the body weight) capsules into the abdomen of 26-day-old male rats. The body growth, as determined by change in biological body weight and growth of the long bones and the axial skeleton, was reduced in rats bearing a heavy load compared with light load. Removal of the increased load resulted in a catch-up growth and a normalization of body weight. Loading decreased hypothalamic growth hormone releasing hormone mRNA, liver insulin-like growth factor (IGF)-1 mRNA, and serum IGF-1, suggesting that the reduced body growth was caused by a negative feedback regulation on the somatotropic axis and this notion was supported by the fact that increased loading did not reduce body growth in GH-treated rats. Based on these data, we propose the gravitostat hypothesis for the regulation of prepubertal growth. This states that there is a homeostatic regulation to maintain the individual specific growth channel via body weight sensing, regulating the somatotropic axis and explaining catch-up growth.
  •  
5.
  • Jansson, John-Olov, 1954, et al. (författare)
  • Body weight homeostat that regulates fat mass independently of leptin in rats and mice.
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 115:2, s. 427-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat ("gravitostat") that regulates fat mass.
  •  
6.
  • Jansson, John-Olov, 1954, et al. (författare)
  • The dual hypothesis of homeostatic body weight regulation, including gravity-dependent and leptin-dependent actions.
  • 2023
  • Ingår i: Philosophical transactions of the Royal Society of London. Series B, Biological sciences. - 1471-2970. ; 378:1888
  • Forskningsöversikt (refereegranskat)abstract
    • Body weight is tightly regulated when outside the normal range. It has been proposed that there are individual-specific lower and upper intervention points for when the homeostatic regulation of body weight is initiated. The nature of the homeostatic mechanisms regulating body weight at the lower and upper ends of the body weight spectrum might differ. Previous studies demonstrate that leptin is the main regulator of body weight at the lower end of the body weight spectrum. We have proposed that land-living animals use gravity to regulate their body weight. We named this homeostatic system the gravitostat and proposed that there are two components of the gravitostat. First, an obvious mechanism involves increased energy consumption in relation to body weight when working against gravity on land. In addition, we propose that there exists a component, involving sensing of the body weight by osteocytes in the weight-bearing bones, resulting in a feedback regulation of energy metabolism and body weight. The gravity-dependent homeostatic regulation is mainly active in obese mice. We, herein, propose the dual hypothesis of body weight regulation, including gravity-dependent actions (= gravitostat) at the upper end and leptin-dependent actions at the lower end of the body weight spectrum. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
  •  
7.
  • Metcalfe, N. B., et al. (författare)
  • Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species
  • 2023
  • Ingår i: Bioessays. - 0265-9247. ; 45:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.
  •  
8.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Increased weight loading reduces body weight and body fat in obese subjects – A proof of concept randomized clinical trial
  • 2020
  • Ingår i: EClinicalMedicine. - : Elsevier BV. - 2589-5370. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recently we provided evidence for a leptin-independent homeostatic regulation, the gravitostat, of body weight in rodents. The aim of the present translational proof of concept study was to test the gravitostat hypothesis in humans. Methods: We conducted a randomized controlled single center trial (ClinicalTrial.gov number, NCT03672903), to evaluate the efficacy of artificially increased weight loading on body weight in subjects with mild obesity (BMI 30–35 kg/m2). Subjects were either treated with a heavy (=high load; 11% of body weight) or light (=low load; 1% of body weight) weight vest for eight hours per day for three weeks. The primary outcome was change in body weight. Secondary outcomes included change in body fat mass and fat-free mass as measured using bioelectrical impedance analysis. Findings: In total 72 participants underwent randomization and 69 (36 high load and 33 low load) completed the study for the primary outcome. High load treatment resulted in a more pronounced relative body weight loss compared to low load treatment (mean difference -1.37%, 95% confidence interval (CI), -1.96 to -0.79; p = 1.5 × 10−5). High load treatment reduced fat mass (-4.04%, 95% CI, -6,53 to -1.55; p = 1.9 × 10−3) but not fat free mass (0.43%, 95% CI, -1.47 to 2.34; p = 0.65) compared to low load treatment. Interpretation: Increased weight loading reduces body weight and fat mass in obese subjects in a similar way as previously shown in obese rodents. These findings demonstrate that there is weight loading dependent homeostatic regulation of body weight, the gravitostat, also in humans. Funding: Funded by Jane and Dan Olsson (JADO) Foundation, the Torsten Söderberg Foundation, The Knut and Alice Wallenberg's Foundation and the Novo Nordisk Foundation. © 2020 The Author(s)
  •  
9.
  • Ohlsson, Claes, 1965, et al. (författare)
  • The Gravitostat Regulates Fat Mass in Obese Male Mice While Leptin Regulates Fat Mass in Lean Male Mice
  • 2018
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 159:7, s. 2676-2682
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin has been the only known homeostatic regulator of fat mass, but we recently found evidence for a second one, named the gravitostat. In the current study, we compared the effects of leptin and increased loading (gravitostat stimulation) on fat mass in mice with different levels of body weight (lean, overweight, and obese). Leptin infusion suppressed body weight and fat mass in lean mice given normal chow but not in overweight or obese mice given a high-fat diet for 4 and 8 weeks, respectively. The maximum effect of leptin on body weight and fat mass was obtained already at < 44 ng/mL of serum leptin. Increased loading using intraperitoneal capsules with different weights decreased body weight in overweight and obese mice. Although the implantation of an empty capsule reduced the body weight in lean mice, only a nonsignificant tendency of a specific effect of increased loading was observed in the lean mice. These findings demonstrate that the gravitostat regulates fat mass in obese mice, whereas leptin regulates fat mass only in lean mice with low endogenous serum leptin levels. We propose that activation of the gravitostat primarily protects against obesity, whereas low levels of leptin protect against undernutrition.
  •  
10.
  • Palsdottir, Vilborg, 1979, et al. (författare)
  • Interactions Between the Gravitostat and the Fibroblast Growth Factor System for the Regulation of Body Weight
  • 2019
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 160:5, s. 1057-1064
  • Tidskriftsartikel (refereegranskat)abstract
    • Both fibroblast growth factors (FGFs), by binding to FGF receptors (FGFRs), and activation of the gravitostat, by artificial loading, decrease the body weight (BW). Previous studies demonstrate that both the FGF system and loading have the capacity to regulate BW independently of leptin. The aim of the current study was to determine the possible interactions between the effect of increased loading and the FGF system for the regulation of BW. We observed that the BW-reducing effect of increased loading was abolished in mice treated with a monoclonal antibody directed against FGFR1c, suggesting interactions between the two systems. As serum levels of endocrine FGF21 and hepatic FGF21 mRNA were increased in the loaded mice compared with the control mice, we first evaluated the loading response in FGF21 over expressing mice with constant high FGF21 levels. Leptin treatment, but not increased loading, decreased the BW in the FGF21-overexpressing mice, demonstrating that specifically the loading effect is attenuated in the presence of high activity in the FGF system. However, as FGF21 knockout mice displayed a normal loading response on BW, FGF21 is neither mediating nor essential for the loading response. In conclusion, the BW-reducing effect of increased loading but not of leptin treatment is blocked by high activity in the FGF system. We propose that both the gravitostat and the FGF system regulate BW independently of leptin and that pharmacologically enhanced activity in the FGF system reduces the sensitivity of the grayitostat.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy