SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Belloche A.) "

Search: WFRF:(Belloche A.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Comito, C., et al. (author)
  • Herschel observations of deuterated water towards Sgr B2(M)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L38-
  • Journal article (peer-reviewed)abstract
    • Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes - grain surfaces versus energetic process in the gas phase, e. g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5 x 10(-11)) in the outer envelope at temperatures below 100 K through a medium abundance (1.5 x 10(-9)) in the inner envelope/outer core at temperatures between 100 and 200 K, and finally a high abundance (3.5 x 10(-9)) at temperatures above 200 K in the hot core.
  •  
3.
  • Güsten, R., et al. (author)
  • APEX - The Atacama Pathfinder Experiment
  • 2006
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 6267 I
  • Conference paper (peer-reviewed)abstract
    • APEX, the Atacama Pathfinder Experiment, has been successfully commissioned and is in operation now. This novel submillimeter telescope is located at 5107 m altitude on Llano de Chajnantor in the Chilean High Andes, on what is considered one of the world's outstanding sites for submillimeter astronomy. The primary reflector with 12 m diameter has been carefully adjusted by means of holography. Its surface smoothness of 17-18 μm makes APEX suitable for observations up to 200 μm, through all atmospheric submm windows accessible from the ground.
  •  
4.
  • Hoare, M. G., et al. (author)
  • The cradle of life and the SKA
  • 2014
  • In: Proceedings of Science. - 1824-8039.
  • Conference paper (peer-reviewed)abstract
    • We provide an overview of the exciting capabilities of the SKA in the Cradle of Life theme. With the deployment of the high frequency band 5 receivers, the phase 1 of the SKA can conduct headline science in the study of the earliest stages of grain growth in proto-planetary disks. SKA1-MID can map the 2 cm continuum emission at a resolution of 4 au in the nearest systems and therefore begin to probe the distribuion of cm-sized particles across the snow line. This frequency range will also enable deep searches for pre-biotic molecules such as amino acids from pre-stellar cores to the cold, outer regions of proto-planetary disks where cometary material forms. The lowest frequency capabilities of SKA1 can be used to examine the magnetic fields of exo-planets via their auroral radio emission. This gives unique insight into their interiors and could potentially detect exo-moons. Across the full frequency range, the SKA1 will also carry out systematic, volume-limited searches of exo-planet systems for signals from technologically advanced civilizations. The sensitivity of SKA1 means that these only need to be at the level of typical airport radar signals in the nearest systems. Hence, the SKA1 can conduct high impact science from the first steps on the road to planets and life, through areas affecting the habitability of planets, and ultimately, to whether we are alone in the Galaxy. These inspirational themes will greatly help in the effort to bring SKA1 science to a wide audience and to ensure the progression to the full SKA.
  •  
5.
  • Csengeri, T., et al. (author)
  • Search for high-mass protostars with ALMA revealed up to kilo-parsec scales (SPARKS): I. Indication for a centrifugal barrier in the environment of a single high-mass envelope
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Journal article (peer-reviewed)abstract
    • The conditions leading to the formation of the most massive O-type stars are still an enigma in modern astrophysics. To assess the physical conditions of high-mass protostars in their main accretion phase, here we present a case study of a young massive clump selected from the ATLASGAL survey, G328.2551-0.5321. The source exhibits a bolometric luminosity of 1.3 × 104L·, which allows us to estimate that its current protostellar mass lies between ∼11 and 16 M·. We show high angular resolution observations with ALMA that reach a physical scale of ∼400 au. To reveal the structure of this high-mass protostellar envelope in detail at a ∼0.17′′ resolution, we used the thermal dust continuum emission and spectroscopic information, amongst others from the CO (J = 3-2) line, which is sensitive to the high-velocity molecular outflow of the source. We also used the SiO (J = 8-7) and SO2(J = 82,6-71,7) lines, which trace shocks along the outflow, as well as several CH3OH and HC3N lines that probe the gas of the inner envelope in the closest vicinity of the protostar. Our observations of the dust continuum emission reveal a single high-mass protostellar envelope, down to our resolution limit. We find evidence for a compact, marginally resolved continuum source that is surrounded by azimuthal elongations that could be consistent with a spiral pattern. We also report on the detection of a rotational line of CH3OH within its vt= 1 torsionally excited state. This shows two bright emission peaks that are spatially offset from the dust continuum peak and exhibit a distinct velocity component ±4.5 km s-1offset from the systemic velocity of the source. Rotational diagram analysis and models based on local thermodynamic equilibrium assumption require high CH3OH column densities that reach N(CH3OH) = 1.2-2 × 1019cm-2, and kinetic temperatures of the order of 160-200 K at the position of these peaks. A comparison of their morphology and kinematics with those of the outflow component of the CO line and the SO2line suggests that the high-excitation CH3OH spots are associated with the innermost regions of the envelope. While the HC3N v7= 0 (J = 37-36) line is also detected in the outflow, the HC3N v7= 1e (J = 38-37) rotational transition within the first vibrationally excited state of the molecule shows a compact morphology. We find that the velocity shifts at the position of the observed high-excitation CH3OH spots correspond well to the expected Keplerian velocity around a central object with 15 M·consistent with the mass estimate based on the bolometric luminosity of the source. We propose a picture where the CH3OH emission peaks trace the accretion shocks around the centrifugal barrier, pinpointing the interaction region between the collapsing envelope and an accretion disc. The physical properties of the accretion disc inferred from these observations suggest a specific angular momentum several times higher than typically observed towards low-mass protostars. This is consistent with a scenario of global collapse setting on at larger scales that could carry a more significant amount of kinetic energy compared to the core-collapse models of low-mass star formation. Furthermore, our results suggest that vibrationally excited HC3N emission could be a new tracer for compact accretion discs around high-mass protostars.
  •  
6.
  • De Simone, M., et al. (author)
  • Glycolaldehyde in Perseus young solar analogs
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 599
  • Journal article (peer-reviewed)abstract
    • © ESO 2017. Context. The earliest evolutionary stages of low-mass protostars are characterised by the so-called hot-corino stage, when the newly born star heats the surrounding material and enrich the gas chemically. Studying this evolutionary phase of solar protostars may help understand the evolution of prebiotic complex molecules in the development of planetary systems. Aims. In this paper we focus on the occurrence of glycolaldehyde (HCOCH 2 OH) in young solar analogs by performing the first homogeneous and unbiased study of this molecule in the Class 0 protostars of the nearby Perseus star forming region. Methods. We obtained sub-arcsec angular resolution maps at 1.3 mm and 1.4 mm of glycolaldehyde emission lines using the IRAM Plateau de Bure (PdB) interferometer in the framework of the CALYPSO IRAM large program. Results. Glycolaldehyde has been detected towards 3 Class 0 and 1 Class I protostars out of the 13 continuum sources targeted in Perseus: NGC1333-IRAS2A1, NGC1333-IRAS4A2, NGC1333-IRAS4B1, and SVS13-A. The NGC1333 star forming region looks particularly glycolaldehyde rich, with a rate of occurrence up to 60%. The glycolaldehyde spatial distribution overlaps with the continuum one, tracing the inner 100 au around the protostar. A large number of lines (up to 18), with upper-level energies E u from 37 K up to 375 K has been detected. We derived column densities ≥10 15 cm -2 and rotational temperatures T rot between 115 K and 236 K, imaging for the first time hot-corinos around NGC1333-IRAS4B1 and SVS13-A. Conclusions. In multiple systems glycolaldehyde emission is detected only in one component. The case of the SVS13-A+B and IRAS4-A1+A2 systems support that the detection of glycolaldehyde (at least in the present Perseus sample) indicates older protostars (i.e. SVS13-A and IRAS4-A2), evolved enough to develop the hot-corino region (i.e. 100 K in the inner 100 au). However, only two systems do not allow us to firmly conclude whether the primary factor leading to the detection of glycolaldehyde emission is the environments hosting the protostars, evolution (e.g. low value of L submm /L int ), or accretion luminosity (high L int ).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view