SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bellomo Giovanni) "

Sökning: WFRF:(Bellomo Giovanni)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Delaby, Constance, et al. (författare)
  • Clinical reporting following the quantification of cerebrospinal fluid biomarkers in Alzheimer's disease: An international overview.
  • 2022
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 18:10, s. 1868-1879
  • Tidskriftsartikel (refereegranskat)abstract
    • The current practice of quantifying cerebrospinal fluid (CSF) biomarkers as an aid in the diagnosis of Alzheimer's disease (AD) varies from center to center. For a same biochemical profile, interpretation and reporting of results may differ, which can lead to misunderstandings and raises questions about the commutability of tests.We obtained a description of (pre-)analytical protocols and sample reports from 40 centers worldwide. A consensus approach allowed us to propose harmonized comments corresponding to the different CSF biomarker profiles observed in patients.The (pre-)analytical procedures were similar between centers. There was considerable heterogeneity in cutoff definitions and report comments. We therefore identified and selected by consensus the most accurate and informative comments regarding the interpretation of CSF biomarkers in the context of AD diagnosis.This is the first time that harmonized reports are proposed across worldwide specialized laboratories involved in the biochemical diagnosis of AD.
  •  
2.
  • Gaetani, Lorenzo, et al. (författare)
  • The Immune Signature of CSF in Multiple Sclerosis with and without Oligoclonal Bands: A Machine Learning Approach to Proximity Extension Assay Analysis
  • 2024
  • Ingår i: International Journal of Molecular Sciences. - 1661-6596 .- 1422-0067. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Early diagnosis of multiple sclerosis (MS) relies on clinical evaluation, magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF) analysis. Reliable biomarkers are needed to differentiate MS from other neurological conditions and to define the underlying pathogenesis. This study aimed to comprehensively profile immune activation biomarkers in the CSF of individuals with MS and explore distinct signatures between MS with and without oligoclonal bands (OCB). A total of 118 subjects, including relapsing–remitting MS with OCB (MS OCB+) (n = 58), without OCB (MS OCB−) (n = 24), and controls with other neurological diseases (OND) (n = 36), were included. CSF samples were analyzed by means of proximity extension assay (PEA) for quantifying 92 immune-related proteins. Neurofilament light chain (NfL), a marker of axonal damage, was also measured. Machine learning techniques were employed to identify biomarker panels differentiating MS with and without OCB from controls. Analyses were performed by splitting the cohort into a training and a validation set. CSF CD5 and IL-12B exhibited the highest discriminatory power in differentiating MS from controls. CSF MIP-1-alpha, CD5, CXCL10, CCL23 and CXCL9 were positively correlated with NfL. Multivariate models were developed to distinguish MS OCB+ and MS OCB− from controls. The model for MS OCB+ included IL-12B, CD5, CX3CL1, FGF-19, CST5, MCP-1 (91% sensitivity and 94% specificity in the training set, 81% sensitivity, and 94% specificity in the validation set). The model for MS OCB− included CX3CL1, CD5, NfL, CCL4 and OPG (87% sensitivity and 80% specificity in the training set, 56% sensitivity and 48% specificity in the validation set). Comprehensive immune profiling of CSF biomarkers in MS revealed distinct pathophysiological signatures associated with OCB status. The identified biomarker panels, enriched in T cell activation markers and immune mediators, hold promise for improved diagnostic accuracy and insights into MS pathogenesis.
  •  
3.
  • Gobom, Johan, et al. (författare)
  • Validation of the LUMIPULSE automated immunoassay for the measurement of core AD biomarkers in cerebrospinal fluid.
  • 2022
  • Ingår i: Clinical chemistry and laboratory medicine. - : Walter de Gruyter GmbH. - 1437-4331 .- 1434-6621. ; 60:2, s. 207-219
  • Tidskriftsartikel (refereegranskat)abstract
    • The core cerebrospinal fluid (CSF) biomarkers; total tau (tTau), phospho-tau (pTau), amyloid β1-42(Aβ 1-42), and the Aβ 1-42/Aβ 1-40 ratio have transformed Alzheimer's disease (AD) research and are today increasingly used in clinical routine laboratories as diagnostic tools. Fully automated immunoassay instruments with ready-to-use assay kits and calibrators has simplified their analysis and improved reproducibility of measurements. We evaluated the analytical performance of the fully automated immunoassay instrument LUMIPULSE G (Fujirebio) for measurement of the four core AD CSF biomarkers and determined cutpoints for AD diagnosis.Comparison of the LUMIPULSE G assays was performed with the established INNOTEST ELISAs (Fujirebio) for hTau Ag, pTau 181, β-amyloid 1-42, and with V-PLEX Plus Aβ Peptide Panel 1 (6E10) (Meso Scale Discovery) for Aβ 1-42/Aβ 1-40, as well as with a LC-MS reference method for Aβ 1-42. Intra- and inter-laboratory reproducibility was evaluated for all assays. Clinical cutpoints for Aβ 1-42, tTau, and pTau was determined by analysis of three cohorts of clinically diagnosed patients, comprising 651 CSF samples. For the Aβ 1-42/Aβ 1-40 ratio, the cutpoint was determined by mixture model analysis of 2,782 CSF samples.The LUMIPULSE G assays showed strong correlation to all other immunoassays (r>0.93 for all assays). The repeatability (intra-laboratory) CVs ranged between 2.0 and 5.6%, with the highest variation observed for β-amyloid 1-40. The reproducibility (inter-laboratory) CVs ranged between 2.1 and 6.5%, with the highest variation observed for β-amyloid 1-42. The clinical cutpoints for AD were determined to be 409ng/L for total tau, 50.2ng/L for pTau 181, 526ng/L for β-amyloid 1-42, and 0.072 for the Aβ 1-42/Aβ 1-40 ratio.Our results suggest that the LUMIPULSE G assays for the CSF AD biomarkers are fit for purpose in clinical laboratory practice. Further, they corroborate earlier presented reference limits for the biomarkers.
  •  
4.
  • Teunissen, Charlotte E, et al. (författare)
  • Methods to Discover and Validate Biofluid-Based Biomarkers in Neurodegenerative Dementias.
  • 2023
  • Ingår i: Molecular & cellular proteomics : MCP. - : Elsevier BV. - 1535-9484 .- 1535-9476. ; 22:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy