SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beloozerova Irina N) "

Sökning: WFRF:(Beloozerova Irina N)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zelenin, Pavel V, et al. (författare)
  • Activity of motor cortex neurons during backward locomotion.
  • 2011
  • Ingår i: Journal of Neurophysiology. - 0022-3077.
  • Tidskriftsartikel (refereegranskat)abstract
    • Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, while cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW, and compare it to that during FW. For this purpose, we recorded activity of individual neurons in the cat during BW and FW. We found that the discharge frequency in almost all neurons was modulated in the rhythm of stepping during both FW and BW. However, the modulation patterns during BW and FW were different in 80% of neurons. To determine the source of modulating influences (forelimb controllers versus hindlimb controllers), the neurons were recorded not only during quadrupedal locomotion, but also during bipedal locomotion (with either forelimbs or hindlimbs walking), and their modulation patterns were compared. We found that during BW (like during FW), modulation in some neurons was determined by inputs from limb controllers of only one girdle, while the other neurons received inputs from both girdles. The combinations of inputs could depend on the direction of locomotion. Most often (in 51% of forelimb-related neurons and in 34% of the hindlimb-related neurons), the neurons received inputs only from their own girdle when this girdle was leading, and from both girdles when this girdle was trailing. This reconfiguration of inputs suggests flexibility of the functional roles of individual cortical neurons during different forms of locomotion.
  •  
2.
  • Zelenin, Pavel V, et al. (författare)
  • Contribution of Different Limb Controllers to Modulation of Motor Cortex Neurons during Locomotion.
  • 2011
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 31:12, s. 49-4636
  • Tidskriftsartikel (refereegranskat)abstract
    • During locomotion, neurons in motor cortex exhibit profound step-related frequency modulation. The source of this modulation is unclear. The aim of this study was to reveal the contribution of different limb controllers (locomotor mechanisms of individual limbs) to the periodic modulation of motor cortex neurons during locomotion. Experiments were conducted in chronically instrumented cats. The activity of single neurons was recorded during regular quadrupedal locomotion (control), as well as when only one pair of limbs (fore, hind, right, or left) was walking while another pair was standing. Comparison of the modulation patterns in these neurons (their discharge profile with respect to the step cycle) during control and different bipedal locomotor tasks revealed several groups of neurons that receive distinct combinations of inputs from different limb controllers. In the majority (73%) of neurons from the forelimb area of motor cortex, modulation during control was determined exclusively by forelimb controllers (right, left, or both), while in the minority (27%), hindlimb controllers also contributed. By contrast, only in 30% of neurons from the hindlimb area was modulation determined exclusively by hindlimb controllers (right or both), while in 70% of them, the controllers of forelimbs also contributed. We suggest that such organization of inputs allows the motor cortex to contribute to the right-left limbs' coordination within each of the girdles during locomotion, and that it also allows hindlimb neurons to participate in coordination of the movements of the hindlimbs with those of the forelimbs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy