SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ben David Yael) "

Sökning: WFRF:(Ben David Yael)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Ben-David, Yael, et al. (författare)
  • RIC3, the cholinergic anti-inflammatory pathway, and neuroinflammation
  • 2020
  • Ingår i: International Immunopharmacology. - : ELSEVIER. - 1567-5769 .- 1878-1705. ; 83
  • Tidskriftsartikel (refereegranskat)abstract
    • Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels having many functions including inflammation control, as part of the cholinergic anti-inflammatory pathway. Genome wide association studies implicated RIC3, a chaperone of nAChRs, in multiple sclerosis (MS), a neuroinflammatory disease. To understand the involvement of RIC3 in inflammatory diseases we examined its expression, regulation, and function in activated immune cells. Our results show that immune activation leads to dynamic changes in RIC3 expression, in a mouse model of MS and in human lymphocytes and macrophages. We also show similarities in the expression dynamics of RIC3 and CHRNA7, encoding for the alpha 7 nAChR subunit. Homomeric alpha 7 nAChRs were shown to mediate the anti-inflammatory effects of cholinergic agonists. Thus, similarity in expression dynamics between RIC3 and CHRNA7 is suggestive of functional concordance. Indeed, siRNA mediated silencing of RIC3 in a mouse macrophage cell line eliminates the anti-inflammatory effects of cholinergic agonists. Furthermore, we show increased average expression of RIC3 and CHRNA7 in lymphocytes from MS patients, and a strong correlation between expression levels of these two genes in MS patients but not in healthy donors. Together, our results are consistent with a role for RIC3 and for the mechanisms regulating its expression in inflammatory processes and in neuroinflammatory diseases.
  •  
3.
  • Dickstein, Yaakov, et al. (författare)
  • Treatment Outcomes of Colistin- and Carbapenem-resistant Acinetobacter baumannii Infections : An Exploratory Subgroup Analysis of a Randomized Clinical Trial
  • 2019
  • Ingår i: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 69:5, s. 769-776
  • Tidskriftsartikel (refereegranskat)abstract
    • Background We evaluated the association between mortality and colistin resistance in Acinetobacter baumannii infections and the interaction with antibiotic therapy. Methods This is a secondary analysis of a randomized controlled trial of patients with carbapenem-resistant gram-negative bacterial infections treated with colistin or colistin-meropenem combination. We evaluated patients with infection caused by carbapenem-resistant A. baumannii (CRAB) identified as colistin susceptible (CoS) at the time of treatment and compared patients in which the isolate was confirmed as CoS with those whose isolates were retrospectively identified as colistin resistant (CoR) when tested by broth microdilution (BMD). The primary outcome was 28-day mortality. Results Data were available for 266 patients (214 CoS and 52 CoR isolates). Patients with CoR isolates had higher baseline functional capacity and lower rates of mechanical ventilation than patients with CoS isolates. All-cause 28-day mortality was 42.3% (22/52) among patients with CoR strains and 52.8% (113/214) among patients with CoS isolates (P = .174). After adjusting for variables associated with mortality, the mortality rate was lower among patients with CoR isolates (odds ratio [OR], 0.285 [95% confidence interval {CI}, .118-.686]). This difference was associated with treatment arm: Mortality rates among patients with CoR isolates were higher in those randomized to colistin-meropenem combination therapy compared to colistin monotherapy (OR, 3.065 [95% CI, 1.021-9.202]). Conclusions Colistin resistance determined by BMD was associated with lower mortality among patients with severe CRAB infections. Among patients with CoR isolates, colistin monotherapy was associated with a better outcome compared to colistin-meropenem combination therapy.
  •  
4.
  • Alejandre, Elizabeth M., et al. (författare)
  • Characterization Factors to Assess Land Use Impacts on Pollinator Abundance in Life Cycle Assessment
  • 2023
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 57:8, s. 3445-3454
  • Tidskriftsartikel (refereegranskat)abstract
    • While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.
  •  
5.
  • Mitchell, Megan, I, et al. (författare)
  • Extracellular Vesicle Capture by AnTibody of CHoice and Enzymatic Release (EV-CATCHER) : A customizable purification assay designed for small-RNA biomarker identification and evaluation of circulating small-EVs
  • 2021
  • Ingår i: Journal of Extracellular Vesicles. - : John Wiley & Sons. - 2001-3078. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating nucleic acids, encapsulated within small extracellular vesicles (EVs), provide a remote cellular snapshot of biomarkers derived from diseased tissues, however selective isolation is critical. Current laboratory-based purification techniques rely on the physical properties of small-EVs rather than their inherited cellular fingerprints. We established a highly-selective purification assay, termed EV-CATCHER, initially designed for high-throughput analysis of low-abundance small-RNA cargos by next-generation sequencing. We demonstrated its selectivity by specifically isolating and sequencing small-RNAs from mouse small-EVs spiked into human plasma. Western blotting, nanoparticle tracking, and transmission electron microscopy were used to validate and quantify the capture and release of intact small-EVs. As proof-of-principle for sensitive detection of circulating miRNAs, we compared small-RNA sequencing data from a subset of small-EVs serum-purified with EV-CATCHER to data from whole serum, using samples from a small cohort of recently hospitalized Covid-19 patients. We identified and validated, only in small-EVs, hsa-miR-146a and hsa-miR-126-3p to be significantly downregulated with disease severity. Separately, using convalescent sera from recovered Covid-19 patients with high anti-spike IgG titers, we confirmed the neutralizing properties, against SARS-CoV-2 in vitro, of a subset of small-EVs serum-purified by EV-CATCHER, as initially observed with ultracentrifuged small-EVs. Altogether our data highlight the sensitivity and versatility of EV-CATCHER.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy