SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Benatto Leandro) "

Sökning: WFRF:(Benatto Leandro)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benatto, Leandro, et al. (författare)
  • Molecular origin of efficient hole transfer from non-fullerene acceptors : insights from first-principles calculations
  • 2019
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 7:39, s. 12180-12193
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the strong exciton binding energy (E-b) of organic materials, the energy offset between donor (D) and acceptor (A) materials is essential to promote charge generation in organic solar cells (OSCs). Yet an efficient exciton dissociation from non-fullerene acceptors (NFAs) began to be observed in D/A blends even at very low driving force for hole transfer (Delta H-h). The mechanism behind this efficient photoinduced hole transfer (PHT) remains unclear since current estimates from calculations of isolated molecules indicate that E-b > Delta H-h. Here we rationalize these discrepancies using density functional theory (DFT), the total Gibbs free energy method and the extended Huckel theory (EHT). First, we employed DFT to calculate E-b for NFAs of three representative groups (perylene diimide derivatives, indacenodithiophene and subphthalocyanines) as well as for fullerene acceptors (FAs). Considering isolated molecules in the calculations, we verified that E-b for NFAs is lower than for FAs but still higher than the experimental Delta H-h in which efficient PHT has been observed. Finding the molecular geometry of the excited state, we also obtain that the structural relaxation after photoexcitation tends to further decrease (increase) E-b for NFAs (FAs). This effect helps explain the delayed charge generation measured in some NFA systems. However, this effect is still not large enough for a significant decrease in E-b. We then applied EHT to quantify the decrease of E-b induced by energy levels coupling between stacked molecules in a model aggregate. We then estimated the number of stacked molecules so that E-b approaches Delta H-h's. We found that small NFA aggregates, involving around 5 molecules, are already large enough to explain the experiments. Our results are justified by the low energy barrier to the generation of delocalized states in these systems (especially for the hole delocalization). Therefore, they indicate that molecular systems with certain characteristics can achieve efficient molecular orbital delocalization, which is a key factor to allow an efficient exciton dissociation in low-driving-force systems. These theoretical findings provide a sound explanation to very recent observations in OSCs.
  •  
2.
  • Wouk de Menezes, Luana, et al. (författare)
  • Charge Transfer Dynamics and Device Performance of Environmentally Friendly Processed Nonfullerene Organic Solar Cells
  • 2018
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 1:9, s. 4776-4785
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last years, one of the pursuits has been to replace the use of halogenated solvent during the processing of organic photovoltaic (OPV) devices. Herein, we investigate the nonhalogenated solvent, o-methylanisole (o-MA) and the well stabilized o-dichlorobenzene (o-DCB) to process the bulk heterojunction (BHJ) based on PTB7-Th donor (D) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2,3 - d]-s-indaceno [1,2-b:5,6-b] dithiophene) (ITIC) acceptor (A). The formation of D A interfaces with different (solvent-dependent) characteristics was verified by steady-state photoluminescence and morphological and electrical measurements. These measurements show a rather comparable device efficiency of the PTB7-th:ITIC BHJ processed by o-MA (compared to the device processed using o-DCB) despite the lower absorption of the films and the lower V-OC. Also, the charge-transfer (CT) state formation was investigated and the reasons behind the V-OC losses were correlated to the interface variations when processed by different solvents. Some experimental results are then discussed in light of the electronic structure of the molecules calculated using the density functional theory (DFT) method. The comparison between the experimental data and the theoretical calculations give some insights about the microscopic processes involved in the variation of the devices properties processed using the o-DCB and o-Ma solvents. We concluded that the D-A distance clearly affects the CT state energy and consequently the V-OC. Furthermore, higher air stability is observed when the active layer is processed using o-MA instead of o-DCB. The better stability was observed in self-lifetime measurements and air-processed devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy