SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bendiksen E.) "

Search: WFRF:(Bendiksen E.)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Crous, P. W., et al. (author)
  • Fungal Planet description sheets : 785-867
  • 2018
  • In: Persoonia. - : Naturalis Biodiversity Center. - 0031-5850 .- 1878-9080. ; 41, s. 238-417
  • Journal article (peer-reviewed)abstract
    • Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora cotymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.) on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia cotymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniefia eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis, Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina on tree branch. Ecuador, Ganoderma chocoense on tree trunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixed forest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, lnocybe roseascens on soil in mixed forest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris from soil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) from soil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia x europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.) on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov.), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica from unidentified vine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.) from soil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from office air. Vietnam, Fistulinella olivaceoalba on soil. Morphological and culture characteristics along with DNA barcodes are provided.
  •  
2.
  • Zamora, Juan Carlos, et al. (author)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • In: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Journal article (peer-reviewed)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
3.
  • Dima, B., et al. (author)
  • Fungal Systematics and Evolution: FUSE 7
  • 2021
  • In: Sydowia. - 0082-0598. ; 73, s. 271-340
  • Journal article (peer-reviewed)abstract
    • In this 7th contribution to the Fungal Systematics and Evolution series published by Sydowia, the authors formally describe 14 species: Cantharomyces paschalis, Cryptandromyces pinguis, C. tricornis, Laboulbenia amblystomi (Laboulbeniales); Cortinarius squamosus, Entoloma brunneicoeruleum, E. callipygmaeum, E. minutigranulosum, E. perasprellum, E. pulchripes, E. tigrinum, E. timidum, E. violaceoserrulatum (Agaricales); and Suillus quercinus (Boletales). The following new country records are reported: Crepidotus malachioides from Italy, Leucoagaricus mucrocystis from French Guiana, Pluteus multiformis from Turkey (Agaricales); Herpomyces periplanetae from Benin, the D.R. Congo, and Togo (Herpomycetales); Melanustilospora ari from Pakistan (Urocystidales); Neopestalotiopsis clavispora causing fruit rot on Zizyphus mauritiana from India (Amphisphaeriales); and Phytopythium chamaehyphon and Pp. litorale from Brazil (Peronosporales). Finally, a new combination is proposed based on morphology, ecology, and phylogenetic analysis: Rhodocollybia asema (Agaricales).
  •  
4.
  • Haelewaters, D., et al. (author)
  • Fungal Systematics and Evolution: FUSE 6
  • 2020
  • In: Sydowia. - 0082-0598. ; 72, s. 171-296
  • Journal article (other academic/artistic)abstract
    • Fungal Systematics and Evolution (FUSE) is one of the journal series to address the“fusion”between morphological data and molecular phylogenetic data and to describe new fungal taxa and interesting observations. This paper is the 6th contribution in the FUSE series—presenting one new genus, twelve new species, twelve new country records, and three new combinations. The new genus is: Pseudozeugandromyces (Laboulbeniomycetes, Laboulbeniales). The new species are: Albatrellopsis flettioides from Pakistan, Aureoboletus garciae from Mexico, Entoloma canadense from Canada, E. frigidum from Sweden, E. porphyroleucum from Vietnam, Erythrophylloporus flammans from Vietnam, Marasmiellus boreoorientalis from Kamchatka Peninsula in the Russian Far East, Marasmiellus longistipes from Pakistan, Pseudozeugandromyces tachypori on Tachyporus pusillus (Coleoptera, Staphylinidae) from Belgium, Robillarda sohagensis from Egypt, Trechispora hondurensis from Honduras, and Tricholoma kena- nii from Turkey. The new records are: Arthrorhynchus eucampsipodae on Eucampsipoda africanum (Diptera, Nycteribiidae) from Rwanda and South Africa, and on Nycteribia vexata (Diptera, Nycteribiidae) from Bulgaria; A. nycteribiae on Eucampsipoda africanum from South Africa, on Penicillidia conspicua (Diptera, Nycteribiidae) from Bulgaria (the first undoubtful country record), and on Penicillidia pachymela from Tanzania; Calvatia lilacina from Pakistan; Entoloma shangdongense from Pakistan; Erysiphe quercicola on Ziziphus jujuba (Rosales, Rhamnaceae) and E. urticae on Urtica dioica (Rosales, Urticaceae) from Paki- stan; Fanniomyces ceratophorus on Fannia canicularis (Diptera, Faniidae) from the Netherlands; Marasmiellus biformis and M. subnudus from Pakistan; Morchella anatolica from Turkey; Ophiocordyceps ditmarii on Vespula vulgaris (Hymenoptera, Vespidae) from Austria; and Parvacoccum pini on Pinus cembra (Pinales, Pinaceae) from Austria. The new combinations are: Ap pendiculina gregaria, A. scaptomyzae, and Marasmiellus rodhallii. Analysis of an LSU dataset of Arthrorhynchus including isolates of A. eucampsipodae from Eucampsipoda africanum and Nycteribia spp. hosts, revealed that this taxon is a complex of multiple species segregated by host genus. Analysis of an SSU–LSU dataset of Laboulbeniomycetes sequences revealed support for the recognition of four monophyletic genera within Stigmatomyces sensu lato: Appendiculina, Fanniomyces, Gloeandromyces, and Stigmatomyces sensu stricto. Finally, phylogenetic analyses of Rhytismataceae based on ITS–LSU ribosomal DNA resulted in a close relationship of Parvacoccum pini with Coccomyces strobi.
  •  
5.
  • Noordeloos, M. E., et al. (author)
  • Contributions to the revision of the genus Entoloma (Basidiomycota, Agaricales) in Europe: six new species from subgenus Cyanula and typification of E. incarnatofuscescens
  • 2022
  • In: Fungal Systematics and Evolution. - : Westerdijk Fungal Biodiversity Institute. - 2589-3823 .- 2589-3831. ; 9, s. 87-97
  • Journal article (peer-reviewed)abstract
    • In anticipation of a phylogenetically revised monograph of Entoloma in Europe, six new species of subgenus Cyanula are described here. Entoloma cistocruentatum is associated with Cistus in Spain, E. dislocatum occurs in montane regions in Catalonia (Spain) and Tuscany (Italy), E. indikon is known from Denmark and three species are mainly distributed in the Nordic countries in Europe: E. calceus, E. perchalybeum and E. praecipuum. Entoloma incarnatofuscescens, from the /Rusticoides clade is neotypified. A fully amended description is given based on molecular evidence, which includes the recently described E. violaceoparkensis and E. klofacianum which became later synonyms.
  •  
6.
  • Matheson, Gordon O, et al. (author)
  • Prevention and management of non-communicable disease : the IOC consensus statement, Lausanne 2013.
  • 2013
  • In: British Journal of Sports Medicine. - : BMJ. - 0306-3674 .- 1473-0480. ; 47:16, s. 1003-11
  • Journal article (peer-reviewed)abstract
    • Morbidity and mortality from preventable, non-communicable chronic disease (NCD) threatens the health of our populations and our economies. The accumulation of vast amounts of scientific knowledge has done little to change this. New and innovative thinking is essential to foster new creative approaches that leverage and integrate evidence through the support of big data, technology and design thinking. The purpose of this paper is to summarise the results of a consensus meeting on NCD prevention sponsored by the IOC in April 2013. Within the context of advocacy for multifaceted systems change, the IOC's focus is to create solutions that gain traction within healthcare systems. The group of participants attending the meeting achieved consensus on a strategy for the prevention and management of chronic disease that includes the following: (1) Focus on behavioural change as the core component of all clinical programmes for the prevention and management of chronic disease. (2) Establish actual centres to design, implement, study and improve preventive programmes for chronic disease. (3) Use human-centred design in the creation of prevention programmes with an inclination to action, rapid prototyping and multiple iterations. (4) Extend the knowledge and skills of Sports and Exercise Medicine (SEM) professionals to build new programmes for the prevention and treatment of chronic disease focused on physical activity, diet and lifestyle. (5) Mobilise resources and leverage networks to scale and distribute programmes of prevention. True innovation lies in the ability to align thinking around these core strategies to ensure successful implementation of NCD prevention and management programmes within healthcare. The IOC and SEM community are in an ideal position to lead this disruptive change. The outcome of the consensus meeting was the creation of the IOC Non-Communicable Diseases ad hoc Working Group charged with the responsibility of moving this agenda forward.
  •  
7.
  • Matheson, Gordon O, et al. (author)
  • Prevention and Management of Non-Communicable Disease : The IOC Consensus Statement, Lausanne 2013.
  • 2013
  • In: Sports Medicine. - : Springer Science and Business Media LLC. - 0112-1642 .- 1179-2035. ; 43:11, s. 1075-88
  • Journal article (peer-reviewed)abstract
    • Morbidity and mortality from preventable, non-communicable chronic disease (NCD) threatens the health of our populations and our economies. The accumulation of vast amounts of scientific knowledge has done little to change this. New and innovative thinking is essential to foster new creative approaches that leverage and integrate evidence through the support of big data, technology, and design thinking. The purpose of this paper is to summarize the results of a consensus meeting on NCD prevention sponsored by the International Olympic Committee (IOC) in April, 2013. Within the context of advocacy for multifaceted systems change, the IOC's focus is to create solutions that gain traction within health care systems. The group of participants attending the meeting achieved consensus on a strategy for the prevention and management of chronic disease that includes the following: 1. Focus on behavioural change as the core component of all clinical programs for the prevention and management of chronic disease. 2. Establish actual centres to design, implement, study, and improve preventive programs for chronic disease. 3. Use human-centered design in the creation of prevention programs with an inclination to action, rapid prototyping and multiple iterations. 4. Extend the knowledge and skills of Sports and Exercise Medicine (SEM) professionals to build new programs for the prevention and treatment of chronic disease focused on physical activity, diet and lifestyle. 5. Mobilize resources and leverage networks to scale and distribute programs of prevention. True innovation lies in the ability to align thinking around these core strategies to ensure successful implementation of NCD prevention and management programs within health care. The IOC and SEM community are in an ideal position to lead this disruptive change. The outcome of the consensus meeting was the creation of the IOC Non-Communicable Diseases ad-hoc Working Group charged with the responsibility of moving this agenda forward.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view