SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Benke Thomas) "

Sökning: WFRF:(Benke Thomas)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ikram, M. Arfan, et al. (författare)
  • Common variants at 6q22 and 17q21 are associated with intracranial volume
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 539-544
  • Tidskriftsartikel (refereegranskat)abstract
    • During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 x 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 x 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 x 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 x 10(-3) for 6q22 and 1.2 x 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.
  •  
2.
  • Taal, H. Rob, et al. (författare)
  • Common variants at 12q15 and 12q24 are associated with infant head circumference
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 532-538
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.
  •  
3.
  • Amundin, Mats, et al. (författare)
  • Estimating the abundance of the critically endangered Baltic Proper harbour porpoise (Phocoena phocoena) population using passive acoustic monitoring
  • 2022
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowing the abundance of a population is a crucial component to assess its conservationstatus and develop effective conservation plans. For most cetaceans, abundanceestimation is difficult given their cryptic and mobile nature, especially when thepopulation is small and has a transnational distribution. In the Baltic Sea, the numberof harbour porpoises (Phocoena phocoena) has collapsed since the mid-20thcenturyand the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCNand HELCOM; however, its abundance remains unknown. Here, one of the largestever passive acoustic monitoring studies was carried out by eight Baltic Sea nationsto estimate the abundance of the Baltic Proper harbour porpoise for the first time. Bylogging porpoise echolocation signals at 298 stations during May 2011–April2013,calibrating the loggers’ spatial detection performance at sea, and measuring the clickrate of tagged individuals, we estimated an abundance of 71–1105individuals (95% CI,point estimate 491) during May–Octoberwithin the population's proposed managementborder. The small abundance estimate strongly supports that the Baltic Properharbour porpoise is facing an extremely high risk of extinction, and highlights theneed for immediate and efficient conservation actions through international cooperation.It also provides a starting point in monitoring the trend of the populationabundance to evaluate the effectiveness of management measures and determine itsinteractions with the larger neighboring Belt Sea population. Further, we offer evidencethat design-basedpassive acoustic monitoring can generate reliable estimatesof the abundance of rare and cryptic animal populations across large spatial scales.
  •  
4.
  • Carlén, Ida, et al. (författare)
  • Basin-scale distribution of harbour porpoises in the Baltic Sea provides basis for effective conservation actions
  • 2018
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207 .- 1873-2917. ; 226, s. 42-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge on spatial and seasonal distribution of species is crucial when designing protected areas and implementing management actions. The Baltic Proper harbour porpoise (Phocoena phocoena) population is critically endangered, and its distribution is virtually unknown. Here, we used passive acoustic monitoring and species distribution models to describe the spatial and seasonal distribution of harbour porpoises in the Baltic Proper. Porpoise click detectors were deployed over a systematic grid of 297 stations in eight countries from April 2011 through July 2013. Generalized additive models were used to describe the monthly probability of detecting porpoise clicks as a function of spatially-referenced covariates and time. During the reproductive season, two main areas of high probability of porpoise detection were identified. One of those areas, situated on and around the offshore banks in the Baltic Proper, is clearly separated from the known distribution range of the Belt Sea population during breeding season, suggesting this is an important breeding ground for the Baltic Proper population. We commend the designation of this area as a marine protected area and recommend Baltic Sea countries to also protect areas in the southern Baltic Sea and the Hand Bight where additional important harbour porpoise habitats were identified. Further conservation measures should be carried out based on analyses of overlap between harbour porpoise distribution and potentially harmful anthropogenic activities. Our study shows that large-scale systematic monitoring using novel techniques can give important insights on the distribution of low-density populations, and that international cooperation is pivotal when studying transnationally migratory species.
  •  
5.
  • Coenen, Mirthe, et al. (författare)
  • Spatial distributions of white matter hyperintensities on brain MRI: A pooled analysis of individual participant data from 11 memory clinic cohorts
  • 2023
  • Ingår i: NeuroImage. Clinical. - 2213-1582. ; 40
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH patterns as "unusual", but this is largely based on expert opinion, because detailed quantitative information about WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH distribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH patterns. METHODS: Individual participant data (N = 3525, including 777 participants with subjective cognitive decline, 1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), were implemented. RESULTS: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, mainly located in subcortical areas. Only the machine learning method effectively identified individuals with unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely affected locations despite common locations not being affected. DISCUSSION: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should be considered.
  •  
6.
  • Wiemann, Annika, et al. (författare)
  • Mitochondrial Control Region and microsatellite analyses on harbour porpoise (Phocoena phocoena) unravel population differentiation in the Baltic Sea and adjacent waters
  • 2010
  • Ingår i: Conservation Genetics. - : Springer Science and Business Media LLC. - 1566-0621 .- 1572-9737. ; 11:1, s. 195-211
  • Tidskriftsartikel (refereegranskat)abstract
    • The population status of the harbour porpoise (Phocoena phocoena) in the Baltic area has been a continuous matter of debate. Here we present the by far most comprehensive genetic population structure assessment to date for this region, both with regard to geographic coverage and sample size: 497 porpoise samples from North Sea, Skagerrak, Kattegat, Belt Sea, and Inner Baltic Sea were sequenced at the mitochondrial Control Region and 305 of these specimens were typed at 15 polymorphic microsatellite loci. Samples were stratified according to sample type (stranding vs. by-caught), sex, and season (breeding vs. non-breeding season). Our data provide ample evidence for a population split between the Skagerrak and the Belt Sea, with a transition zone in the Kattegat area. Among other measures, this was particularly visible in significant frequency shifts of the most abundant mitochondrial haplotypes. A particular haplotype almost absent in the North Sea was the most abundant in Belt Sea and Inner Baltic Sea. Microsatellites yielded a similar pattern (i.e., turnover in occurrence of clusters identified by STRUCTURE). Moreover, a highly significant association between microsatellite assignment and unlinked mitochondrial haplotypes further indicates a split between North Sea and Baltic porpoises. For the Inner Baltic Sea, we consistently recovered a small, but significant separation from the Belt Sea population. Despite recent arguments that separation should exceed a predefined threshold before populations shall be managed separately, we argue in favour of precautionary acknowledging the Inner Baltic porpoises as a separate management unit, which should receive particular attention, as it is threatened by various factors, in particular local fishery measures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy