SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bensalah Mohamed Khalil) "

Sökning: WFRF:(Bensalah Mohamed Khalil)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ba, Moussa Hamath, et al. (författare)
  • Mapping mafic dyke swarms, structural features, and hydrothermal alteration zones in Atar, Ahmeyim and Chami areas (Reguibat Shield, Northern Mauritania) using high-resolution aeromagnetic and gamma-ray spectrometry data
  • 2020
  • Ingår i: Journal of African Earth Sciences. - : Elsevier BV. - 1464-343X. ; 163
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of an airborne geophysical data covering the Tasiast-Tijirit Terrane in the western part of the Reguibat Shield (including the 1:200,000 geological sheets of Chami, Ahmeyim and Atar), provided an improved mapping of mafic dyke swarms, structural features, and hydrothermal alteration zones. It also extended the mapping into extensive areas covered by sand. A low-altitude (100 m) airborne survey collected high-resolution magnetic and gamma-ray spectrometry data. The magnetic data were enhanced using techniques such as reduction to the pole, analytic signal and first vertical derivative, and revealed dyke swarms with trends of NNE-SSW to NE-SW, NW-SE to WNW-ESE and E-W. The use of the Euler deconvolution method provided constraints on the continuity and the depth of magnetic sources. Gamma-ray spectrometry which maps the three main radioactive elements, i.e. potassium, uranium and thorium helped discriminate lithological units of the Archean basement, notably felsic intrusions. The radiometric data also helped delineate potassic alteration zones, which could testify to hydrothermal activities of relevance to sulfide mineralisation.
  •  
2.
  •  
3.
  • Ait Lahna, Abdelhak, et al. (författare)
  • Revised stratigraphic framework for the lower Anti-Atlas supergroup based on U–Pb geochronology of magmatic and detrital zircons (Zenaga and Bou Azzer-El Graara inliers, Anti-Atlas Belt, Morocco)
  • 2020
  • Ingår i: Journal of African Earth Sciences. - : Elsevier BV. - 1464-343X. ; 171
  • Tidskriftsartikel (refereegranskat)abstract
    • U–Pb geochronology of magmatic and detrital zircons (Zenaga and Bou Azzer-El Graara inliers, Anti-Atlas Belt, Morocco) and a reassessment of the published constraints suggest a revised stratigraphic framework for the lower Anti-Atlas Supergroup. Five major unconformity-bounded lithostratigraphic packages are here distinguished: the two lower units of Paleoproterozoic age are named the Tasserda-Taghatine Group (2030–1706 Ma) and the Oumoula (Mimount) Formation (ca. 1745–1650 Ma); the third unit of Paleoproterozoic to Neoproterozoic age (ca. 1650 to >883 Ma) is the Tizi n'Taghatine Group; the fourth and fifth units of Neoproterozoic age are the ca. 883 Ma Tachdamt and the ca. 700 Ma Bleida formations. Implications of this revised stratigraphic framework include: 1) the Tasserda-Taghatine Group might be linked to the post-orogenic collapse after the Eburnean Orogeny; 2) the Tizi n'Taghatine Group might be ca. 1.1 Ga in age based on proposed correlation with the Taoudeni Basin succession in Mauritania; 3) the Bleida Formation likely reflects deposition in the foreland basin at the early stage of the Pan-African Orogeny; 4) the Oumoula (Mimount) Formation, Tizi n'Taghatine Group, and Tachdamt Formation potentially record extensional events within the Nuna/Columbia and Rodinia supercontinents; 5) the provenance of the lower Anti-Atlas Supergroup (based on our new detrital zircon dating) is mainly from the West African craton along with possible contributions from other cratons such as Amazonia and the Sahara Metacraton; 6) the flood basalt sequence of the Tachdamt Formation likely belongs to the ca. 885-883 Ma intraplate Iguerda-Taïfast Large Igneous Province (LIP) event defined by previously dated dykes in the Iguerda and Taïfast inliers; and 7) the 1650 Ma Zenaga LIP can be potentially linked with LIP magmatism in Baltica and Laurentia.
  •  
4.
  • Ba, Moussa Hamath, et al. (författare)
  • Spatial and temporal distribution patterns of Precambrian mafic dyke swarms in northern Mauritania (West African craton) : analysis and results from remote-sensing interpretation, geographical information systems (GIS), Google Earth ™ images, and regional geology
  • 2020
  • Ingår i: Arabian Journal of Geosciences. - : Springer Science and Business Media LLC. - 1866-7511 .- 1866-7538. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We used remote sensing, geographical information systems, Google Earth™ images, and regional geology in order to (i) improve the mapping of linear structures and understand the chronology of different mafic dyke swarms in the Ahmeyim area that belongs to the Archean Tasiast-Tijirit Terrane of the Reguibat Shield, West African craton, NW Mauritania. The spatial and temporal distributions with the trends of the dyke swarms provide important information about geodynamics. The analysis of the mafic dyke swarms map and statistical data allow us to distinguish four mafic dyke swarm sets: a major swarm trending NE-SW to NNE-SSW (80%) and three minor swarms trending EW to ENE-WSW (9.33%), NW-SE to WNW-ESE (9.06%), and NS (1.3%). The major swarms extend over 35 km while the minor swarms do not exceed 13 km. The Google Earth™ images reveal relative ages through crossover relationships. The major NE-SW to NNE-SSW and the minor NS swarms are the oldest generations emplaced in the Ahemyim area. The NW-SE-oriented swarm dykes which are cutting the two former swarms are emplaced later. The minor E-W to WSW-ENE swarms are probably the youngest. A precise U-Pb baddeleyite age of 2733 ± 2 Ma has been obtained for the NNE-SSW Ahmeyim Great Dyke. This dyke is approximately 1500 m wide in some zone and extends for more than 150 km. The distinct mafic dyke swarms being identified in this study can potentially be linked with coeval magmatic events on other cratons around the globe to identify reconstructed LIPs and constrain continental reconstructions.
  •  
5.
  • Marzoli, Andrea, et al. (författare)
  • Proterozoic to Mesozoic evolution of North-West Africa and Peri-Gondwana microplates : Detrital zircon ages from Morocco and Canada
  • 2017
  • Ingår i: Lithos. - 0024-4937 .- 1872-6143. ; 278-281, s. 229-239
  • Tidskriftsartikel (refereegranskat)abstract
    • The complex history of assemblage and disruption of continental plates surrounding the Atlantic Ocean is in part recorded by the distribution of detrital zircon ages entrained in continental sedimentary strata from Morocco (Central High Atlas and Argana basins) and Canada (Grand Manan Island, New Brunswick). Here we investigate detrital zircon from the latest Triassic (ca. 202Ma) sedimentary strata directly underlying lava flows of the Central Atlantic magmatic province or interlayered within them. SHRIMP (Sensitive High-Resolution Ion MicroProbe) and LA-ICP-MS (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry) U–Pb ages for zircon range from Paleozoic to Archean with a dominant Neoproterozoic peak, and significant amounts of ca. 2Ga zircon. These ages suggest a prevailing West African (Gondwanan) provenance at all sampling sites. Notably, the Paleoproterozoic zircon population is particularly abundant in central Morocco, north of the High Atlas chain, suggesting the presence of Eburnean-aged rocks in this part of the country, which is consistent with recent geochronologic data from outcropping rocks. Minor amounts of late Mesoproterozoic and early Neoproterozoic zircon ages (ca. 1.1–0.9Ga) in Moroccan samples are more difficult to interpret. A provenance from Avalonia or Amazonia, as proposed by previous studies is not supported by the age distributions observed here. An involvement of more distal source regions, possibly located in north-eastern Africa (Arabian Nubian Shield) would instead be possible. Paleozoic zircon ages are abundant in the Canadian sample, pointing to a significant contribution from Hercynian aged source rocks. Such a signal is nearly absent in the Moroccan samples, suggesting that zircon-bearing Hercynian granitic rocks of the Moroccan Meseta block were not yet outcropping at ca. 200Ma. The only Moroccan samples that yield Paleozoic zircon ages are those interlayered within the CAMP lavas, suggesting an increased dismantling (i.e. uplift) of the Hercynian chain during emplacement of CAMP lava flows, combined with subsidence of the volcanic grabens.
  •  
6.
  • Marzoli, Andrea, et al. (författare)
  • The Central Atlantic Magmatic Province (CAMP) in Morocco
  • 2019
  • Ingår i: Journal of Petrology. - : Oxford University Press (OUP). - 0022-3530 .- 1460-2415. ; 60:5, s. 945-996
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Atlantic Magmatic Province (CAMP) is a large igneous province (LIP) composed of basic dykes, sills, layered intrusions and lava flows emplaced before Pangea break-up and currently distributed on the four continents surrounding the Atlantic Ocean. One of the oldest, best preserved and most complete sub-provinces of the CAMP is located in Morocco. Geochemical, geochronologic, petrographic and magnetostratigraphic data obtained in previous studies allowed identification of four strato-chemical magmatic units, i.e. the Lower, Intermediate, Upper and Recurrent units. For this study, we completed a detailed sampling of the CAMP in Morocco, from the Anti Atlas in the south to the Meseta in the north. We provide a complete mineralogical, petrologic (major and trace elements on whole-rocks and minerals), geochronologic (40Ar/39Ar and U–Pb ages) and geochemical set of data (including Sr–Nd–Pb–Os isotope systematics) for basaltic and basaltic–andesitic lava flow piles and for their presumed feeder dykes and sills. Combined with field observations, these data suggest a very rapid (<0·3 Ma) emplacement of over 95% of the preserved magmatic rocks. In particular, new and previously published data for the Lower to Upper unit samples yielded indistinguishable 40Ar/39Ar (mean age = 201·2 ± 0·8 Ma) and U–Pb ages (201·57 ± 0·04 Ma), suggesting emplacement coincident with the main phase of the end-Triassic biotic turnover (c.201·5 to 201·3 Ma). Eruptions are suggested to have been pulsed with rates in excess of 10 km3/year during five main volcanic pulses, each pulse possibly lasting only a few centuries. Such high eruption rates reinforce the likelihood that CAMP magmatism triggered the end-Triassic climate change and mass extinction. Only the Recurrent unit may have been younger but by no more than 1 Ma. Whole-rock and mineral geochemistry constrain the petrogenesis of the CAMP basalts. The Moroccan magmas evolved in mid-crustal reservoirs (7–20 km deep) where most of the differentiation occurred. However, a previous stage of crystallization probably occurred at even greater depths. The four units cannot be linked by closed-system fractional crystallization processes, but require distinct parental magmas and/or distinct crustal assimilation processes. EC-AFC modeling shows that limited crustal assimilation (maximum c.5–8% assimilation of e.g. Eburnean or Pan-African granites) could explain some, but not all the observed geochemical variations. Intermediate unit magmas are apparently the most contaminated and may have been derived from parental magmas similar to the Upper basalts (as attested by indistinguishable trace element contents in the augites analysed for these units). Chemical differences between Central High Atlas and Middle Atlas samples in the Intermediate unit could be explained by distinct crustal contaminants (lower crustal rocks or Pan-African granites for the former and Eburnean granites for the latter). The CAMP units in Morocco are likely derived from 5–10% melting of enriched peridotite sources. The differences observed in REE ratios for the four units are attributed to variations in both source mineralogy and melting degree. In particular, the Lower basalts require a garnet peridotite source, while the Upper basalts were probably formed from a shallower melting region straddling the garnet–spinel transition. Recurrent basalts instead are relatively shallow-level melts generated mainly from spinel peridotites. Sr–Nd–Pb–Os isotopic ratios in the CAMP units from Morocco are similar to those of other CAMP sub-provinces and suggest a significant enrichment of the mantle-source regions by subducted crustal components. The enriched signature is attributed to involvement of about 5–10% recycled crustal materials introduced into an ambient depleted or PREMA-type mantle, while involvement of mantle-plume components like those sampled by present-day Central Atlantic Ocean Island Basalts (OIB, e.g. Cape Verde and Canary Islands) is not supported by the observed compositions. Only Recurrent basalts may possibly reflect a Central Atlantic plume-like signature similar to the Common or FOZO components.
  •  
7.
  •  
8.
  • Youbi, Nasrrddine, et al. (författare)
  • The Central Iapetus magmatic province : An updated review and link with the ca. 580 Ma Gaskiers glaciation
  • 2020
  • Ingår i: Geological Society of America Special Papers : Mass Extinctions, Volcanism, and Impacts: New Developments - Mass Extinctions, Volcanism, and Impacts: New Developments. - : Geological Society of America. - 0072-1077. ; 544, s. 35-66
  • Bokkapitel (refereegranskat)abstract
    • Large igneous provinces and associated silicic magmatism can have a significant global climatic effect, so we explored the relationship between the large igneous province record and the ca. 580 Ma Gaskiers glaciation. The late Ediacaran glaciation exists on at least 14 different paleocontinental blocks, and assuming synchroneity, this Gaskiers glaciation was likely of short duration, with estimates ranging from 1.6 m.y. to 340 k.y. The Central Iapetus magmatic province event found in Laurentia, Baltica, and West Africa consists of multiple pulses in the range 620–520 Ma, with the ca. 580 Ma pulse particularly well developed in North Africa. Based on the age matches of 580–570 Ma Central Iapetus magmatic province pulses and the Gaskiers glaciation, and taking into consideration that there is no robust evidence for a major meteorite impact at the time of the Gaskiers onset, we propose that: (1) the initial silicic ca. 580 Ma pulse of the Ouarzazate event (Anti-Atlas of Morocco) helped to trigger the Gaskiers glaciation, and (2) global warming associated with the subsequent ca. 579–570 Ma continental flood basalts, marking the second stage of the Ouarzazate event, helped to end the ice age.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy