SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Benyahia Erdal Nejla) "

Sökning: WFRF:(Benyahia Erdal Nejla)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adolfsson, Karin H., et al. (författare)
  • Importance of Surface Functionalities for Antibacterial Properties of Carbon Spheres
  • 2019
  • Ingår i: Advanced Sustainable Systems. - : Wiley. - 2366-7486.
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon spheres (CS) are interesting materials for antibacterial applications. Herein, CS are produced by a green process utilizing microwave-assisted hydrothermal treatment of cellulose. The CS are then postmodified in acidic and basic solutions to evaluate the influence of different functionalities on antibacterial properties. CS contain OH/COOH, C Symbol of the Klingon Empire C, and C Symbol of the Klingon Empire O functionalities, while O-CS produced by acid treatment of CS have additional COOH, and NH/NH2 groups, resulting in carbon spheres with negatively and positively charged groups in dispersion. Treatment with base (Na-CS) removes low molecular weight species with oxygen and results in carbon spheres with the highest C/O ratio. CS, O-CS, and Na-CS have nonporous morphology and are in micro/nanometer sizes, although, smaller sized spheres, hollow spheres, and fragments are also attained in the case of O-CS. O-CS show antibacterial activity toward both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa). The minimum inhibitory concentration is 200 and 400 mu g mL(-1) for S. aureus and P. aeruginosa, respectively, and is achieved only after 3 h of incubation. Neither CS nor Na-CS exhibit antibacterial activity. The antibacterial activity is suggested to originate from electrostatic interactions between O-CS and the bacteria.
  •  
2.
  • Benyahia Erdal, Nejla, 1991- (författare)
  • Cellulose derived carbon dots : From synthesis to evaluation as multifunctional building blocks in biomedical scaffolds
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The implementation of biobased and biodegradable polymeric materials in biomedical applications is often coupled with issues related to their insufficient mechanical properties or limited bioactivity. In this thesis, a perspective on valorization of biomass is presented, demonstrating the transformation of cellulose into biobased carbon nanomaterials with the potential to serve as multifunctional property enhancers in polycaprolactone (PCL) scaffold materials for tissue engineering.Firstly, nanographene oxide (nGO) type of carbon dots were produced through a microwave assisted hydrothermal carbonization of cellulose and subsequent oxidation in an acidic environment. The carbon dots demonstrated zero-dimensional (0D) character, ample amount of oxygen functionalities and fluorescence properties. Furthermore, a green reduction process in superheated water was developed to reduce the nGO carbon dots with and without the aid of a green reducing agent, caffeic acid (CA). The resulting r-nGO and r-nGO-CA showed in contrast to nGO decreased oxygen content and enhanced thermal stability. r-nGO-CA, in addition, maintained good cell viability towards osteoblast-like cells at a higher concentration than nGO.Secondly, incorporation of r-nGO or r-nGO-CA in PCL nanocomposites induced great enhancement in mineralization capability and creep resistance. nGO carbon dots could also due to their oxygen-rich content, be utilized to modify 3D scaffolds through surface functionalization and blending. The nGO on the surface of the PCL scaffolds, produced through optimized solvent casting particulate leaching (SCPL) techniques, could act as anchor sites for antibiotic loading and induce mineralization. It was also shown that incorporation of nGO in PCL scaffolds fabricated through high internal phase emulsion (HIPE) templating influenced the macrostructure of the scaffolds further manifesting the versatility and potential of the fabricated biobased carbon dots in biomedical applications.
  •  
3.
  • Benyahia Erdal, Nejla, et al. (författare)
  • Cellulose-Derived Nanographene Oxide Surface-Functionalized Three-Dimensional Scaffolds with Drug Delivery Capability
  • 2019
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 20:2, s. 738-749
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifunctional three-dimensional (3D) scaffolds were targeted by surface grafting cellulose-derived nanographene oxide (nGO) on the surface of porous poly(epsilon-caprolactone) (PCL) scaffolds. nGO was derived from cellulose by microwave-assisted carbonization process and covalently grafted onto aminolyzed PCL scaffolds through an aqueous solution process. Fourier transform infrared spectroscopy and thermogravimetric analysis both verified the successful attachment of nGO and scanning electron microscopy depicted a homogeneous dispersion of nGO over the scaffold surface. Mechanical tests were performed and demonstrated a significant increase in compressive strength for the nGO grafted scaffolds. Grafting of nGO was also shown to induce mineralization with the formation of calcium phosphate precipitates on the surface of the scaffolds with the size increasing with higher nGO content. The potential of surface-grafted nGO as a nanocarrier of an antibiotic drug was also explored. The secondary interactions between nGO and ciprofloxacin, a broad-spectrum antibiotic used in the treatment of osteomyelitis, were optimized by controlling the solution pH. Ciprofloxacin was found to be adsorbed most strongly in its cationic form at pH 5, in which pi-pi electron donor-acceptor interactions predominate and the adsorbed drug content increased with increasing nGO amount. Further, the release kinetics of the drug were investigated during 8 days. In conclusion, the proposed simple fabrication process led to a scaffold with multifunctionality in the form of improved mechanical strength, ability to induce mineralization, as well as drug loading and delivery capability.
  •  
4.
  • Benyahia Erdal, Nejla, et al. (författare)
  • Construction of Bioactive and Reinforced Bioresorbable Nanocomposites by Reduced Nano-Graphene Oxide Carbon Dots
  • 2018
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 19:3, s. 1074-1081
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioactive and reinforced poly(ϵ-caprolactone) (PCL) films were constructed by incorporation of cellulose derived reduced nanographene oxide (r-nGO) carbon nanodots. Two different microwave-assisted reduction routes in superheated water were utilized to obtain r-nGO and r-nGO-CA. For the latter, a green reducing agent caffeic acid (CA), was incorporated in the reduction process. The materials were extruded and compression molded to obtain proper dispersion of the carbon nanodots in the polymer matrix. FTIR results revealed favorable interactions between r-nGO-CA and PCL that improved the dispersion of r-nGO-CA. r-nGO, and r-nGO-CA endorsed PCL with several advantageous functionalities including improved storage modulus and creep resistance. The considerable increase in storage modulus demonstrated that the carbon nanodots had a significant reinforcing effect on PCL. The PCL films with r-nGO-CA were also evaluated for their osteobioactivity and cytocompatibility. Bioactivity was demonstrated by formation of hydroxyapatite (HA) minerals on the surface of r-nGO-CA loaded nanocomposites. At the same time, the good cytocompatibility of PCL was retained as illustrated by the good cell viability to MG63 osteoblast-like cells giving promise for bone tissue engineering applications.
  •  
5.
  • Benyahia Erdal, Nejla, et al. (författare)
  • Degradation of Cellulose Derivatives in Laboratory, Man-Made, and Natural Environments
  • 2022
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 23:7, s. 2713-2729
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodegradable polymers complement recyclable materials in battling plastic waste because some products are difficult to recycle and some will end up in the environment either because of their application or due to wear of the products. Natural biopolymers, such as cellulose, are inherently biodegradable, but chemical modification typically required for the obtainment of thermoplastic properties, solubility, or other desired material properties can hinder or even prevent the biodegradation process. This Review summarizes current knowledge on the degradation of common cellulose derivatives in different laboratory, natural, and man-made environments. Depending on the environment, the degradation can be solely biodegradation or a combination of several processes, such as chemical and enzymatic hydrolysis, photodegradation, and oxidation. It is clear that the type of modification and especially the degree of substitution are important factors controlling the degradation process of cellulose derivatives in combination with the degradation environment. The big variation of conditions in different environments is also briefly considered as well as the importance of the proper testing environment, characterization of the degradation process, and confirmation of biodegradability. To ensure full sustainability of the new cellulose derivatives under development, the expected end-of-life scenario, whether material recycling or "biological"recycling, should be included as an important design parameter. 
  •  
6.
  • Benyahia Erdal, Nejla, et al. (författare)
  • Hydrolytic Degradation of Porous Crosslinked Poly(epsilon-Caprolactone) Synthesized by High Internal Phase Emulsion Templating
  • 2020
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous poly(epsilon-caprolactone) (PCL) scaffolds were fabricated using the high internal polymerization emulsion (HIPE) technique. Bis(epsilon-caprolactone-4-yl) (BCY) was utilized as crosslinker. The crosslinking density and the volume fraction of the dispersed phase were varied in order to study the potential effect of these parameters on the hydrolytic degradation at 37 degrees C and 60 degrees C. After different hydrolysis times the remaining solid samples were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), while the degradation products in the aqueous aging solutions were analyzed by laser desorption ionization-mass spectrometry (LDI-MS). The effect of temperature on the degradation process and release of degradation products was, as expected, significant. The temperature effect was also shown by FTIR analysis that displayed a pronounced increase in the intensity of the hydroxyl-group absorption band after 70 days of hydrolysis at 60 degrees C indicating significant cleavage of the polymer chains. LDI-MS analysis proved the release of oligomers ranging from dimers to hexamers. The product patterns were similar, but the relativem/zsignal intensities increased with increasing time, temperature and crosslinking density, indicating larger amounts of released products. The latter is probably due to the decreasing degree of crystallinity as a function of amount of crosslinker. The porous structure and morphology of the scaffolds were lost during the aging. The higher the crosslinking density, the longer the scaffolds retained their original porous structure and morphology.
  •  
7.
  • Benyahia Erdal, Nejla, et al. (författare)
  • In vitro and in vivo effects of ophthalmic solutions on silicone hydrogel bandage lens material Senofilcon A
  • 2018
  • Ingår i: Clinical and experimental optometry. - : WILEY. - 0816-4622 .- 1444-0938. ; 101:3, s. 354-362
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Acuvue Oasys silicone hydrogel contact lenses (Senofilcon A) are used as bandage lenses and often combined with ophthalmic solutions in the treatment of ocular diseases. Concerns have been raised regarding the compatibility and effect of eye-drop solutions on the bandage lenses, which have led to frequent replacement of lenses causing clinical problems. Some patients experience pain or discomfort during treatments and the accumulation of drugs and preservatives in lenses has been suggested as a possible reason. The aim with this study was to investigate the effect of ophthalmic solutions on silicone hydrogel bandage lens material Senofilcon A in vitro and in vivo. Methods: The effect of three common ophthalmic solutions Isopto-Maxidex, Timosan and Oftaquix on Acuvue Oasys (Senofilcon A) bandage lenses was evaluated. An in vitro model method was developed where drug and preservative uptake by Acuvue Oasys was monitored with ultraviolet-visible spectroscopy and laser desorption ionisation mass spectrometry. Surface morphology changes of the lenses were evaluated using scanning electron microscopy. The method was then implemented for the in vivo pilot study evaluating lenses worn by patients. Results: In vitro model study monitoring the drug and preservatives uptake showed that the active ingredients from all the eye drops together with preservatives were taken up by the lenses in significant amounts. For the in vivo study no traces of active ingredients or preservatives could be found on the worn and treated lenses regardless of time being worn or dosage profiles. The surface morphology changes in the in vivo study were also minor in contrast to the changes observed in the in vitro scanning electron microscopy images. Conclusion: The in vivo results demonstrate minor effects of the ophthalmic solutions on the worn lenses. These results do not support the building up of preservatives and drugs on the contact lenses as the cause of pain or discomfort experienced by some patients, which is encouraging for the use of bandage lenses in combination with ophthalmic solutions.
  •  
8.
  • Benyahia Erdal, Nejla, et al. (författare)
  • Polymer, giant molecules with properties : An entertaining activity introducing polymers to young students
  • 2019
  • Ingår i: Journal of Chemical Education. - : American Chemical Society (ACS). - 0021-9584 .- 1938-1328. ; 96:8, s. 1691-1695
  • Tidskriftsartikel (refereegranskat)abstract
    • In this activity, polymer materials are introduced to 13–16 year old students. The activity is aimed at students with no or little knowledge of polymers. An engaging lecture covering the basics of polymer technology and sustainable development in the plastics field is presented. Important polymers such as polyethylene (PE), cellulose, and polylactide (PLA) are presented, and examples of their everyday use are shown. Quiz questions are employed in the introductory lecture to engage the students, to start discussions, and to evaluate the learning progress. The students are then engaged in two entertaining activities involving a natural polymer alginate and superabsorbent polymers. Alginate spaghetti is produced using different salt solutions enabling the students to create and destroy materials just by playing around with the chemistry, which helps them understand the polymeric material. The second activity has an application-based approach where the ability of superabsorbent polymers in diapers to retain water is investigated. The overall quiz results and discussions after the activities show an improved understanding of polymers and their applications and properties, making this activity useful for teaching polymers to young students.
  •  
9.
  •  
10.
  • Bianchi, F., et al. (författare)
  • Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry
  • 2019
  • Ingår i: Talanta. - : Elsevier B.V.. - 0039-9140 .- 1873-3573. ; 202, s. 136-144
  • Tidskriftsartikel (refereegranskat)abstract
    • A reliable screening and non invasive method based on the use of microextraction by packed sorbent coupled with desorption electrospray ionization-high resolution mass spectrometry was developed and validated for the detection of new psychoactive substances in oral fluid. The role of different sample substrates in enhancing signal intensity and stability was evaluated by testing the performances of two polylactide-based materials, i.e. non-functionalized and functionalized with carbon nanoparticles, and a silica-based material compared to commercially available polytetrafluorethylene supports. The best results were achieved by using the non-functionalized polylactide substrates to efficiently ionize compounds in positive ionization mode, whereas the silica coating proved to be the best choice for operating in negative ionization mode. LLOQs in the low μg/L, a good precision with CV% always lower than 16% and RR% in the 83(±4)-120(±2)% range, proved the suitability of the developed method for the determination of the analytes in oral fluid. Finally, the method was applied for screening oral fluid samples for the presence of psychoactive substances during private parties, revealing mephedrone in only one sample out of 40 submitted to analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy