SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Benzing T) "

Sökning: WFRF:(Benzing T)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Butt, Linus, et al. (författare)
  • A molecular mechanism explaining albuminuria in kidney disease
  • 2020
  • Ingår i: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 2:5, s. 461-474
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian kidneys constantly filter large amounts of liquid, with almost complete retention of albumin and other macromolecules in the plasma. Breakdown of the three-layered renal filtration barrier results in loss of albumin into urine (albuminuria) across the wall of small renal capillaries, and is a leading cause of chronic kidney disease. However, exactly how the renal filter works and why its permeability is altered in kidney diseases is poorly understood. Here we show that the permeability of the renal filter is modulated through compression of the capillary wall. We collect morphometric data prior to and after onset of albuminuria in a mouse model equivalent to a human genetic disease affecting the renal filtration barrier. Combining quantitative analyses with mathematical modelling, we demonstrate that morphological alterations of the glomerular filtration barrier lead to reduced compressive forces that counteract filtration pressure, thereby resulting in capillary dilatation, and ultimately albuminuria. Our results reveal distinct functions of the different layers of the filtration barrier and expand the molecular understanding of defective renal filtration in chronic kidney disease.
  •  
2.
  •  
3.
  • Butt, Linus, et al. (författare)
  • Super-Resolution Imaging of the Filtration Barrier Suggests a Role for Podocin R229Q in Genetic Predisposition to Glomerular Disease
  • 2021
  • Ingår i: Journal of the American Society of Nephrology. - : Wolters Kluwer. - 1046-6673 .- 1533-3450. ; 33:1, s. 138-154
  • Tidskriftsartikel (refereegranskat)abstract
    • Significance Statement Podocin R229Q results from the most frequent missense variant in NPHS2, and its association with FSGS when podocin R229Q is transassociated with a second mutation in NPHS2 is well recognized. However, because results from observational studies are ambiguous and appropriate animal studies are lacking, its isolated pathogenic potency is not entirely clear. In this study, the authors introduced this genetic alteration in mice and assessed the phenotype using super-resolution microscopy and albuminuria measurements. They demonstrated a deleterious effect of the variant on podocyte morphology and on the integrity of the glomerular filtration barrier under basal conditions and after external glomerular injury. Because this finding suggests that this mutation confers a genetic predisposition to glomerular disease, it has implications for a large number of carriers worldwide.Background Diseases of the kidney’s glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results.Methods To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (PodR231Q). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments.Results Heterozygous PodR231Q/wild-type mice did not present any overt kidney disease or proteinuria. However, homozygous PodR231Q/R231Q mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous PodR231Q/wild-type mice showed a more severe course of disease compared with Podwild-type/wild-type mice. Podocin protein levels were decreased in PodR231Q/wild-type and PodR231Q/R231Q mice as well as in human cultured podocytes expressing the podocinR231Q variant. Our in vitro experiments indicate an underlying increased proteasomal degradation.Conclusions Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients.
  •  
4.
  •  
5.
  • Unnersjö Jess, David, et al. (författare)
  • A fast and simple clearing and swelling protocol for 3D in-situ imaging of the kidney across scales
  • 2021
  • Ingår i: Kidney International. - : Elsevier BV. - 0085-2538 .- 1523-1755. ; 99:4, s. 1010-1020
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, many light-microscopy protocols have been published for visualization of nanoscale structures in the kidney. These protocols present researchers with new tools to evaluate both foot process anatomy and effacement, as well as protein distributions in foot processes, the slit diaphragm and in the glomerular basement membrane. However, these protocols either involve the application of different complicated super resolution microscopes or lengthy sample preparation protocols. Here, we present a fast and simple, five-hour long procedure for three-dimensional visualization of kidney morphology on all length scales. The protocol combines optical clearing and tissue expansion concepts to produce a mild swelling, sufficient for resolving nanoscale structures using a conventional confocal microscope. We show that the protocol can be applied to visualize a wide variety of pathologic features in both mouse and human kidneys. Thus, our fast and simple protocol can be beneficial for conventional microscopic evaluation of kidney tissue integrity both in research and possibly in future clinical routines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy