SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berbigier P.) "

Sökning: WFRF:(Berbigier P.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Granier, A., et al. (författare)
  • Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003
  • 2007
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 143:1-2, s. 123-145
  • Tidskriftsartikel (refereegranskat)abstract
    • The drought of 2003 was exceptionally severe in many regions of Europe, both in duration and in intensity. In some areas, especially in Germany and France, it was the strongest drought for the last 50 years, lasting for more than 6 months. We used continuous carbon and water flux measurements at 12 European monitoring sites covering various forest ecosystem types and a large climatic range in order to characterise the consequences of this drought on ecosystems functioning. As soil water content in the root zone was only monitored in a few sites, a daily water balance model was implemented at each stand to estimate the water balance terms: trees and understorey transpiration, rainfall interception, throughfall, drainage in the different soil layers and soil water content. This model calculated the onset date, duration and intensity of the soil water shortage (called water stress) using measured climate and site properties: leaf area index and phenology that both determine tree transpiration and rainfall interception, soil characteristics and root distribution, both influencing water absorption and drainage. At sites where soil water content was measured, we observed a good agreement between measured and modelled soil water content. Our analysis showed a wide spatial distribution of drought stress over Europe, with a maximum intensity within a large band extending from Portugal to NE Germany. Vapour fluxes in all the investigated sites were reduced by drought, due to stomatal closure, when the relative extractable water in soil (REW) dropped below ca. 0.4. Rainfall events during the drought, however, typically induced rapid restoration of vapour fluxes. Similar to the water vapour fluxes, the net ecosystem production decreased with increasing water stress at all the sites. Both gross primary production (GPP) and total ecosystem respiration (TER) also decreased when REW dropped below 0.4 and 0.2, for GPP and TER, respectively. A higher sensitivity to drought was found in the beech, and surprisingly, in the broadleaved Mediterranean forests; the coniferous stands (spruce and pine) appeared to be less drought-sensitive. The effect of drought on tree growth was also large at the three sites where the annual tree growth was measured. Especially in beech, this growth reduction was more pronounced in the year following the drought (2004). Such lag effects on tree growth should be considered an important feature in forest ecosystems, which may enhance vulnerability to more frequent climate extremes.
  •  
2.
  • Duursma, R. A., et al. (författare)
  • Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis
  • 2009
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 29:5, s. 621-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Gross primary production (GPP) is the primary source of all carbon fluxes in the ecosystem. Understanding, variation in this flux is vital to understanding variation in the carbon sink of forest ecosystems, and this would serve as input to forest production models. Using GPP derived from eddy-covariance (EC) Measurements, it is now possible to determine the most important factor to scale GPP across sites. We use long-term EC measurements for six coniferous forest stands in Europe, for a total of 25 site-years, located oil a gradient between Southern France and northern Finland. Eddy-derived GPP varied threefold across the six sites, peak ecosystem leaf area index (LAI) (all-sided) varied from 4 to 22 m(2) m(-2) and mean annual temperature varied from - 1 to 13 degrees C. A process-based model operating at a half-hourly time-step was parameterized with available information for each site, and explained 71-96% in variation between daily totals of GPP within site-years and 62% of annual total GPP across site-years. Using the parameterized model, we performed two simulation experiments: weather datasets were interchanged between sites, so that the model was used to predict GPP at some site using data from either a different year or a different site. The resulting bias in GPP prediction was related to several aggregated weather variables and was found to be closely related to the change in the effective temperature sum or mean annual temperature. High R(2)s resulted even when using weather datasets from unrelated sites, providing a cautionary note on the interpretation of R-2 ill model comparisons. A second experiment interchanged stand-structure information between sites. and the resulting bias was strongly related to the difference in LAI, or the difference in integrated absorbed light. Across the six sites. variation in mean annual temperature had more effect on simulated GPP than the variation in LAI. but both were important determinants of GPP. A sensitivity analysis of leaf physiology parameters showed that the quantum yield was the most influential parameter on annual GPP, followed by a parameter controlling the seasonality of photosynthesis and photosynthetic capacity. Overall, the results are promising for the development of a parsimonious model of GPP.
  •  
3.
  • Magnani, F, et al. (författare)
  • The human footprint in the carbon cycle of temperate and boreal forests
  • 2007
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885. ; 447, s. 848-850
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 times 107 square kilometres and act as a substantial carbon sink (0.6–0.7 petagrams of carbon per year)1. Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations2, 3. The relevance of this measurement effort has also been questioned4, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities5. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation6 under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).
  •  
4.
  • Yi, Chuixiang, et al. (författare)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy