SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berchem J.) "

Sökning: WFRF:(Berchem J.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Zhou, M., et al. (författare)
  • Observation of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region by the spacecraft of the Magnetospheric Multiscale (MMS) mission
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4808-4815
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.
  •  
3.
  • Lapenta, G., et al. (författare)
  • On the origin of the crescent-shaped distributions observed by MMS at the magnetopause
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:2, s. 2024-2039
  • Tidskriftsartikel (refereegranskat)abstract
    • MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earth's magnetopause. In this paper, we reexamine the origin of the crescent-shaped distributions in the light of our new finding that ions and electrons are drifting in opposite directions when displayed in magnetopause boundary-normal coordinates. Therefore, E x B drifts cannot cause the crescent shapes. We performed a high-resolution multiscale simulation capturing subelectron skin-depth scales. The results suggest that the crescent-shaped distributions are caused by meandering orbits without necessarily requiring any additional processes found at the magnetopause such as the highly asymmetric magnetopause ambipolar electric field. We use an adiabatic Hamiltonian model of particle motion to confirm that conservation of canonical momentum in the presence of magnetic field gradients causes the formation of crescent shapes without invoking asymmetries or the presence of an E x B drift. An important consequence of this finding is that we expect crescent-shaped distributions also to be observed in the magnetotail, a prediction that MMS will soon be able to test.
  •  
4.
  • Zhou, M., et al. (författare)
  • Coalescence of Macroscopic Flux Ropes at the Subsolar Magnetopause : Magnetospheric Multiscale Observations
  • 2017
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 119:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report unambiguous in situ observation of the coalescence of macroscopic flux ropes by the magnetospheric multiscale (MMS) mission. Two coalescing flux ropes with sizes of similar to 1 R-E were identified at the subsolar magnetopause by the occurrence of an asymmetric quadrupolar signature in the normal component of the magnetic field measured by the MMS spacecraft. An electron diffusion region (EDR) with a width of four local electron inertial lengths was embedded within the merging current sheet. The EDR was characterized by an intense parallel electric field, significant energy dissipation, and suprathermal electrons. Although the electrons were organized by a large guide field, the small observed electron pressure nongyrotropy may be sufficient to support a significant fraction of the parallel electric field within the EDR. Since the flux ropes are observed in the exhaust region, we suggest that secondary EDRs are formed further downstream of the primary reconnection line between the magnetosheath and magnetospheric fields.
  •  
5.
  • Zhou, M., et al. (författare)
  • Magnetospheric Multiscale Observations of an Ion Diffusion Region With Large Guide Field at the Magnetopause : Current System, Electron Heating, and Plasma Waves
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:3, s. 1834-1852
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Magnetospheric Multiscale (MMS) observations of a reconnecting current sheet in the presence of a weak density asymmetry with large guide field at the dayside magnetopause. An ion diffusion region (IDR) was detected associated with this current sheet. Parallel current dominated over the perpendicular current in the IDR, as found in previous studies of component reconnection. Electrons were preferentially heated parallel to the magnetic field within the IDR. The heating was manifested as a flattop distribution below 400eV. Two types of electromagnetic electron whistler waves were observed within the regions where electrons were heated. One type of whistler wave was associated with nonlinear structures in E-|| with amplitudes up to 20mV/m. The other type was not associated with any structures in E-||. Poynting fluxes of these two types of whistler waves were directed away from the X-line. We suggest that the nonlinear evolution of the oblique whistler waves gave rise to the solitary structures in E-||. There was a perpendicular super-Alfvenic outflow jet that was carried by magnetized electrons. Intense electrostatic lower hybrid drift waves were localized in the current sheet center and were probably driven by the super-Alfvenic electron jet, the velocity of which was approximately equal to the diamagnetic drift of demagnetized ions. Our observations suggest that the guide field significantly modified the structures (Hall electromagnetic fields and current system) and wave properties in the IDR.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Li, Jinxing, et al. (författare)
  • Local Excitation of Whistler Mode Waves and Associated Langmuir Waves at Dayside Reconnection Regions
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:17, s. 8793-8802
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Earth's dayside reconnection boundary layer, whistler mode waves coincide with magnetic field openings and the formation of the resultant anisotropic electrons. Depending on the energy range of anisotropic electrons, whistlers can grow at frequencies in the upper and/or lower band. Observations show that whistler mode waves modulate Langmuir wave amplitude as they propagate toward the X line. Observations of whistler mode wave phase and Langmuir waves packets, as well as coincident electron measurements, reveal that whistler mode waves can accelerate electrons via Landau resonance at locations where E(parallel to)is antiparallel to the wave propagation direction. The accelerated electrons produce localized beams, which subsequently drive the periodically modulated Langmuir waves. The close association of those two wave modes reveals the microscale electron dynamics in the exhaust region, and the proposed mechanism could potentially be applied to explain the modulation events observed in planetary magnetospheres and in the solar wind. Plain Language Summary The Sun's and Earth's magnetic field can merge and reconnect on dayside magnetopause. Using measurements from NASA's MMS spacecraft, we report that a class of electromagnetic wave, named whistler mode wave, coincides with the reconnected magnetic field lines. Besides, those whistlers are observed to modulate the electric field oscillations, known as Langmuir waves. Using high-resolution wave and particle measurements, we explain that the whistlers are locally excited when electrons from both sides of the magnetopause mix and form an unstable distribution. The modulated Langmuir waves are generated due to localized electron acceleration, which occurs when the velocity of electrons matches that of whistlers in the direction along the magnetic field. The whistler mode waves and associated Langmuir waves can be used as an additional tool to remotely sense the occurrence of magnetic reconnections.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy